# Machine Learning for Geothermal Fault Detection and Flow Imaging

Lianjie Huang<sup>1</sup> and Yingcai Zheng<sup>2</sup>

<sup>1</sup>Los Alamos National Laboratory, Los Alamos, NM 87545 <sup>2</sup>University of Houston, Houston, TX 77004





#### **Collaborators**

- LANL: Kai Gao, David Li, Chenglong Duan, Joseph McNease, Michael Gross
- LBNL: Stanislav Glubokovskikh
- MIT: Michael Fehler
- **UT Dallas**: David Lumley
- Industry: Trenton Cladouhos (Quaise), Michael Swyer (Cyrq), Joel Edwards (Zanskar)

#### Outline

- Objectives
- Fault Detection Using Nested-Residual U-Net
- Image Denoising via Nested-Residual U-Net
- ConvNeXt-Based Fault Detection and Image Denoising
- Machine Learning for Flow Imaging
- Conclusions

#### **Objectives: Fault Detection**

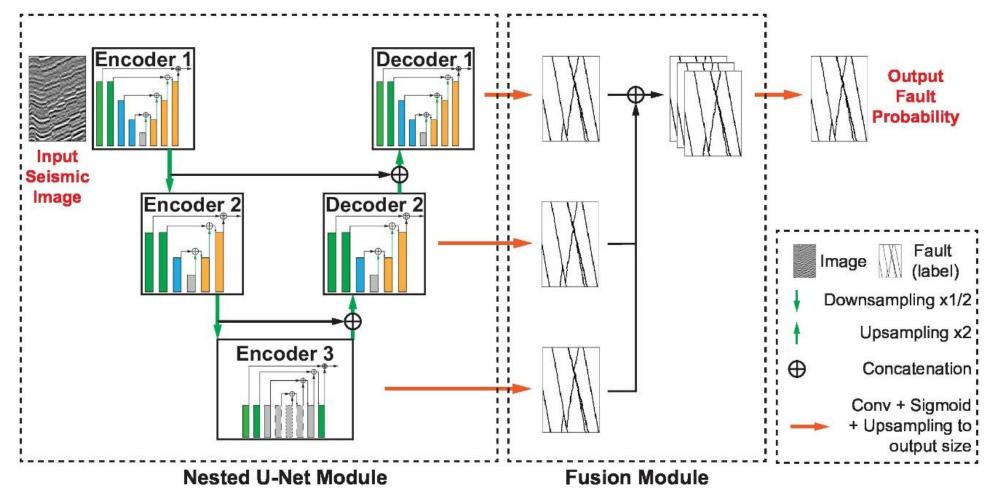
#### Purposes of Fault Detection

- Crucial for understanding subsurface fluid migration
- Enables accurate well placement and reservoir modeling
- Mitigates induced seismicity by identifying active vs. inactive faults
- Boosts geothermal project cost-effectiveness and success rate
- High-resolution fault maps improve exploration outcomes
- Use ML to enable efficient fault detection from complex 3D seismic migration images

## **Objectives: Flow Imaging**

- Purposes of Flow Imaging
  - Identifies active fluid pathways
  - Maps permeability and fracture structures
  - Monitors injection/production dynamics
  - Detects thermal breakthroughs early
- Use continuous microseismic signals and unsupervised ML to extract fluid flow-induced signals for flow imaging

# Fault Detection with Nested-Residual U-Net (NRU): Improved Fault Continuity

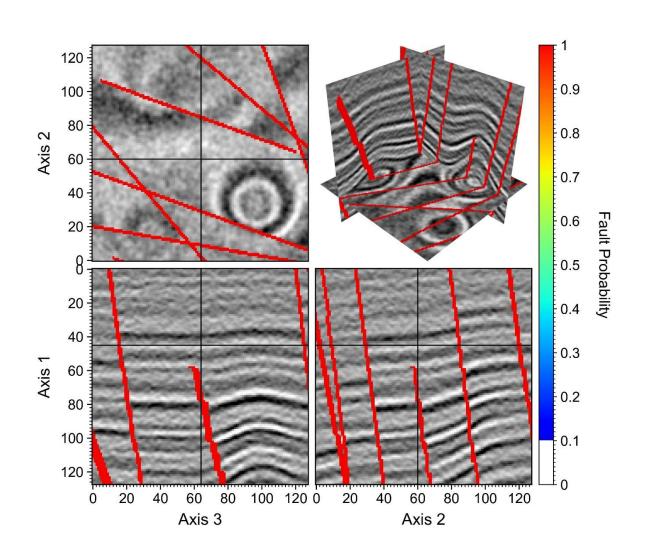


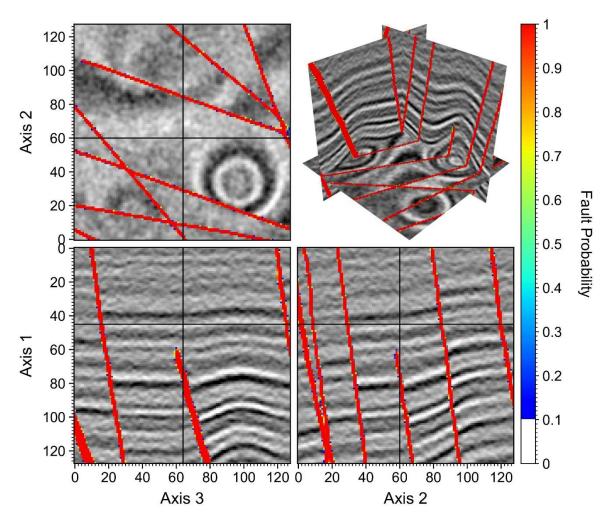
(Gao, Huang, Zheng, IEEE-TGRS, 2022)

Seismic Image True Faults U-Net NRU ML Fault Detection on Seismic Migration Images from Synthetic Data

## 3D Seismic Image with True Faults

#### **NRU-Detected Faults**





#### Fault Detection with NRU

#### Nested-Residual U-Net (NRU)

- Trained on synthetic seismic data
- Outperforms conventional U-Net in fault detection and clarity
- Effectively detects true fault geometries in 3D migration images

#### Comparison

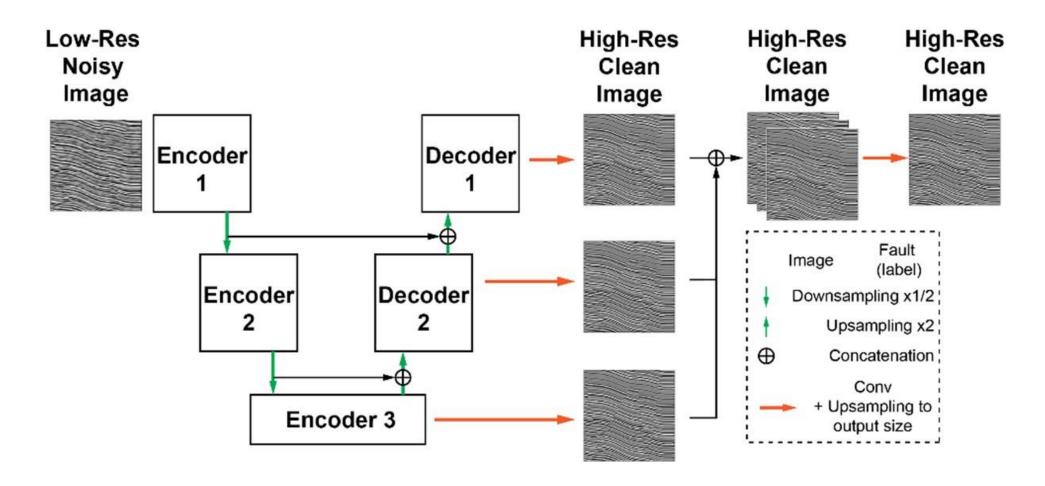
- Visual results show superior delineation with NRU
- Demonstrates fault continuity in complex geological settings

## Image Noise and the Need for Denoising

#### **Impact of Seismic Image Noise:**

- Noise in seismic images → Misinterpreted faults
  - → Poor well placement
- Denoising boosts precision and model robustness

## Nested-Residual U-Net (NRU) Image Denoising

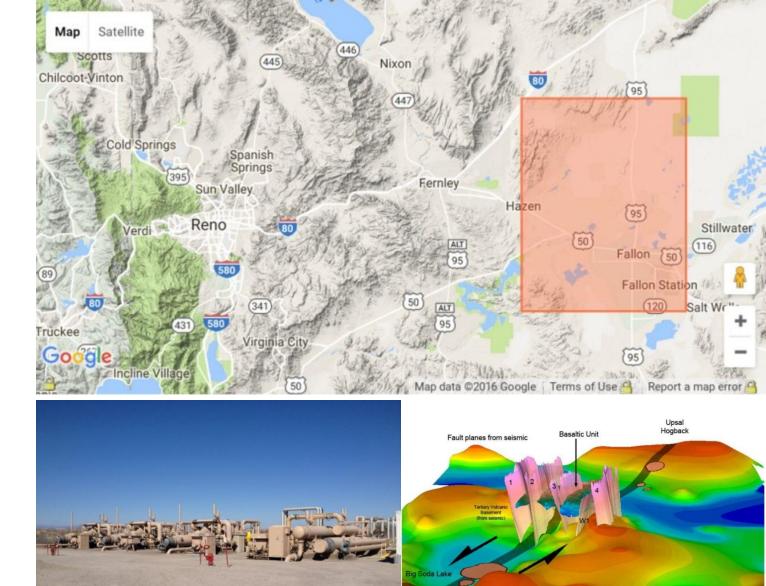


#### Case Study: Soda Lake Geothermal Field

- 26.5 MW binary plant, Nevada
- Complex geology with basalt and fault systems
- Seismic image degraded by acquisition gaps and low SNR

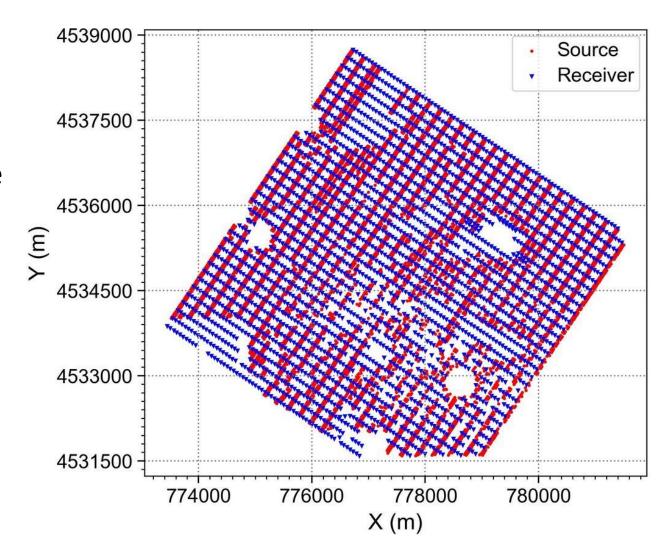
#### **ML Processing**

- NRU applied to 3D reverse-time migration (RTM) slices
- RMS balancing improves depth consistency
- Result: Enhanced fault visibility and clearer interpretation

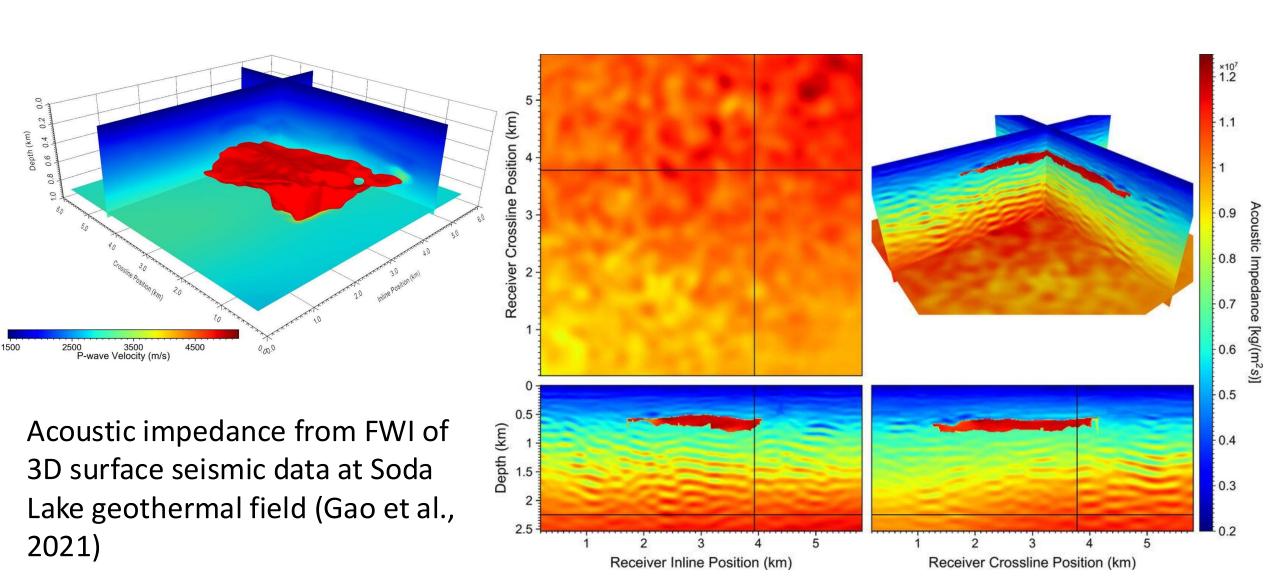


#### 3D Seismic Survey

- Gaps in source and receiver coverage introduce migration artifacts
- Weak reflections beneath basalt and complex geology lead to low signal-to-noise ratios
- Seismic image resolution deteriorates with increasing depth
- High-quality, high-resolution migration is essential for accurate fault detection

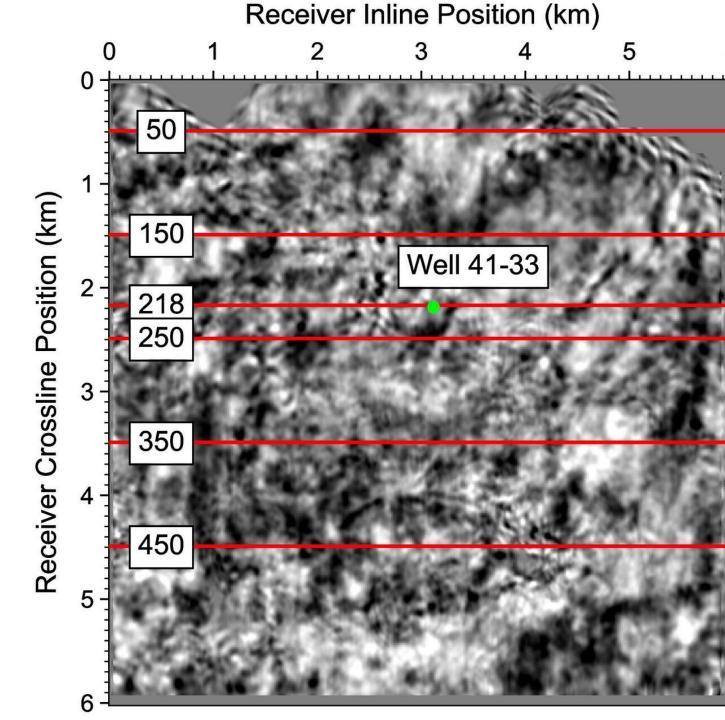


#### **Basaltic Unit in Red**

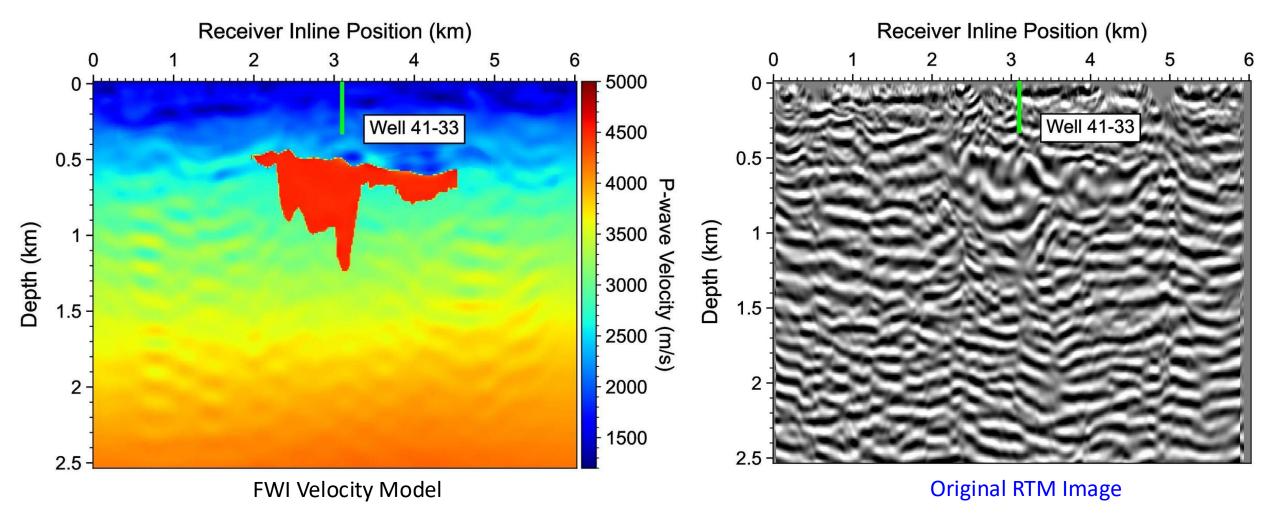


## 2D Slice of 3D RTM Image: Line 218 along Well 41-33

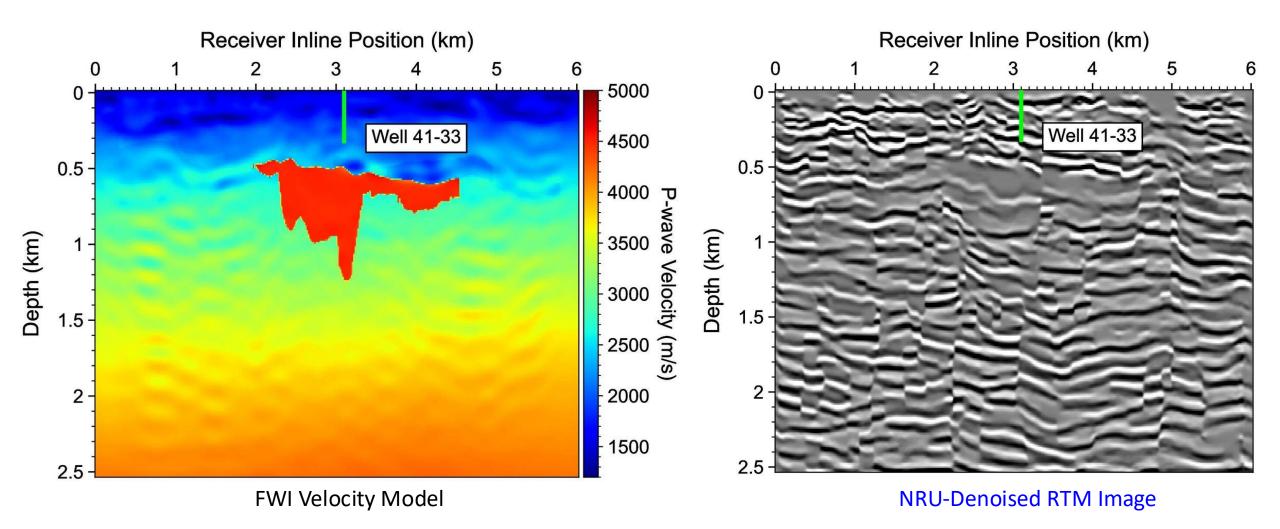
- Extract a 2D depth slice along Well 41-33 from the 3D RTM image of the Soda Lake geothermal field
- Well 41-33 is a geothermal production well producing energy from a steam zone.
- Apply windowed 2D RMS balancing to equalize image amplitudes from shallow to deep regions



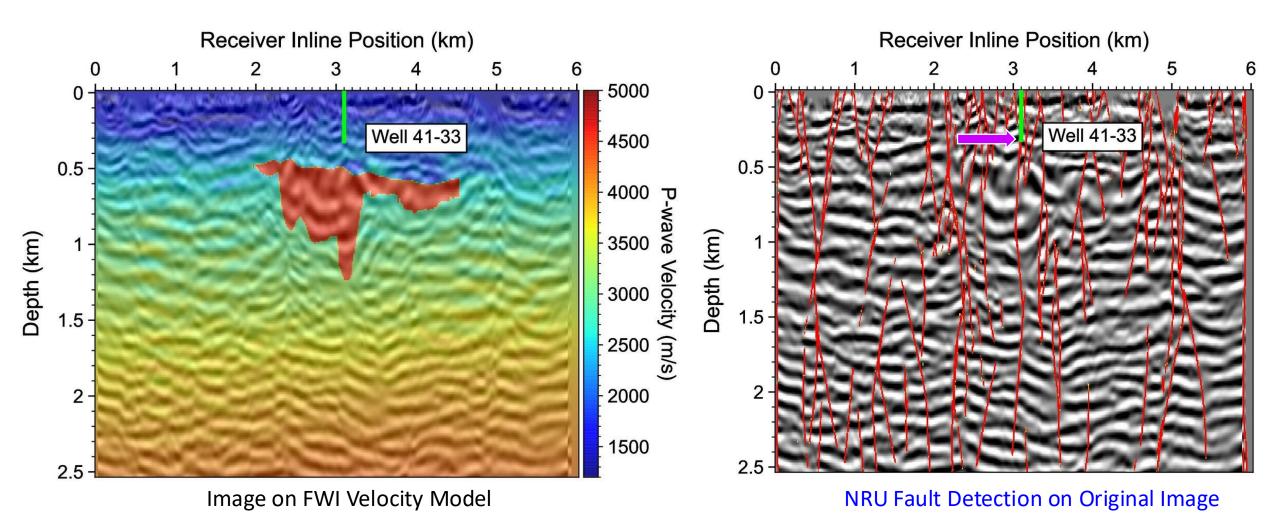
## Line 218: Original Image



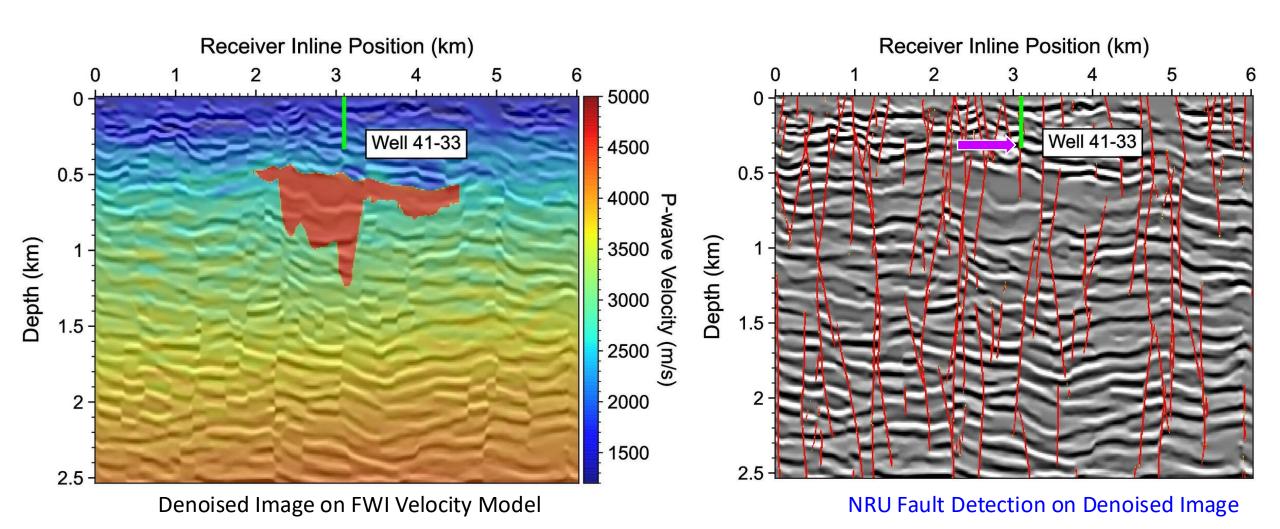
## Line 218: NRU-Denoised Image with Enhanced Resolution



## Line 218: NRU Fault Detection on Original Image

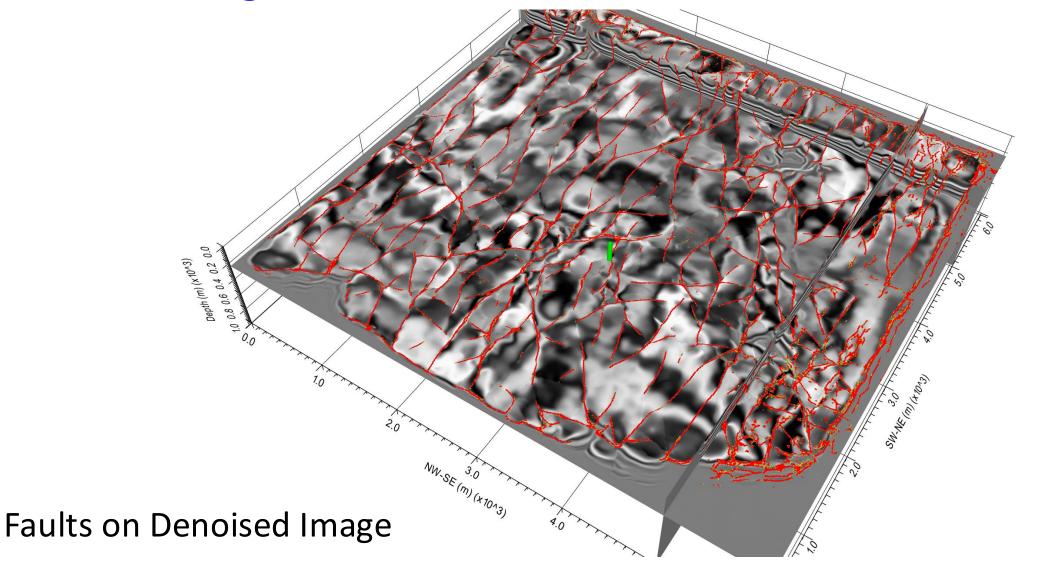


## Line 218: NRU Fault Detection on Denoised Image



#### Steam Zones at Depth of 800 ft:

NRU faults align with Well 41-33 steam zone → Validated model



20

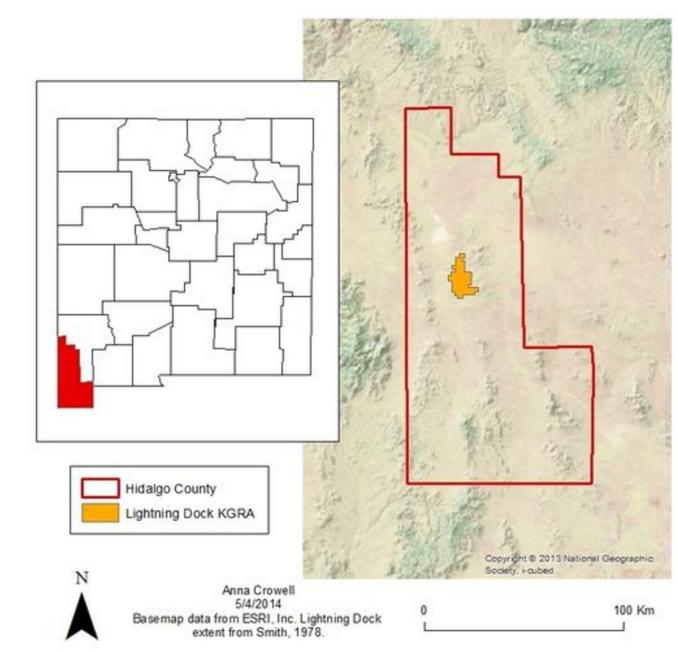
#### **Lessons Learned**

- **Verification**: Well 41-33, a geothermal production well extracting energy from a steam zone, intersects a detected fault, confirming the model's accuracy.
- Image Denoising: Essential for improving the accuracy of ML-based fault detection.
- **Practical Value**: Detected faults offer critical guidance for siting new injection and production wells.

## Case Study: Lightning Dock Geothermal Field

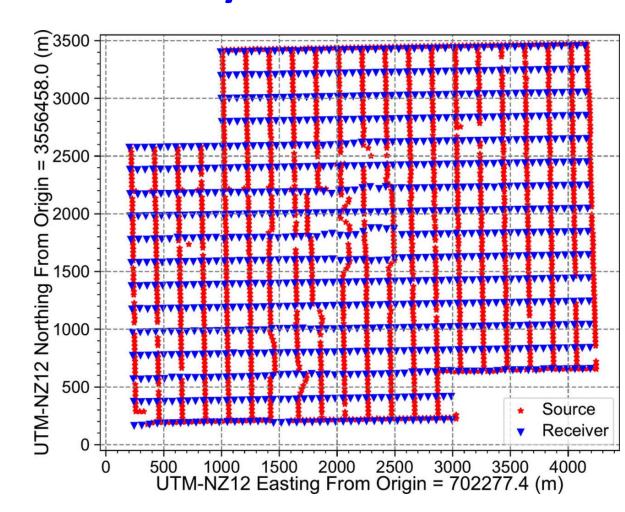
- Located in New Mexico, USA.
- Increased from 4 MW to 12 MW (2013–2018).
- 3D seismic data with RTM and FWI processing
- NRU used to detect faults postdenoising
- Output: High-fidelity structural imaging

#### Lightning Dock KGRA: Hidalgo County, New Mexico

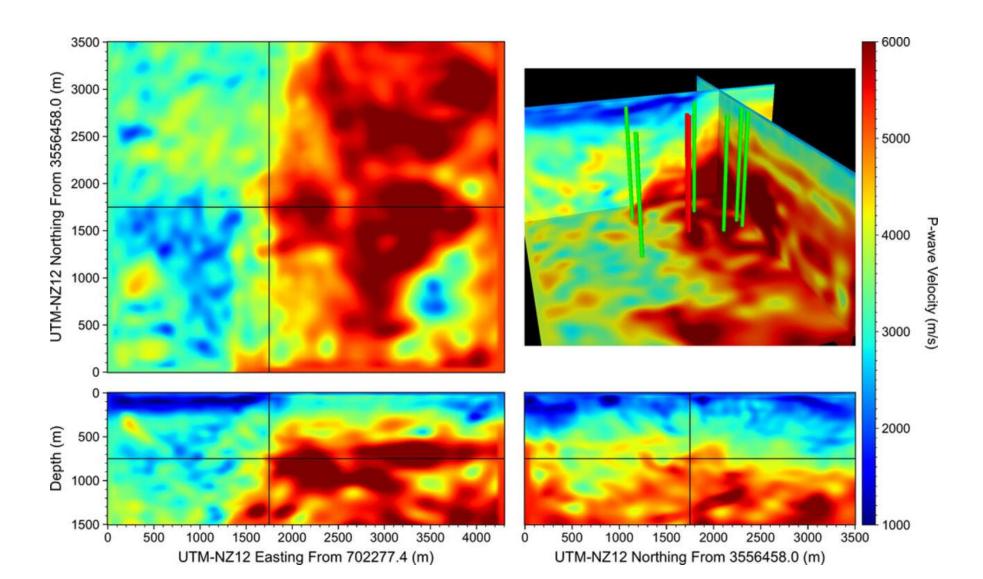


## 3D Seismic Survey

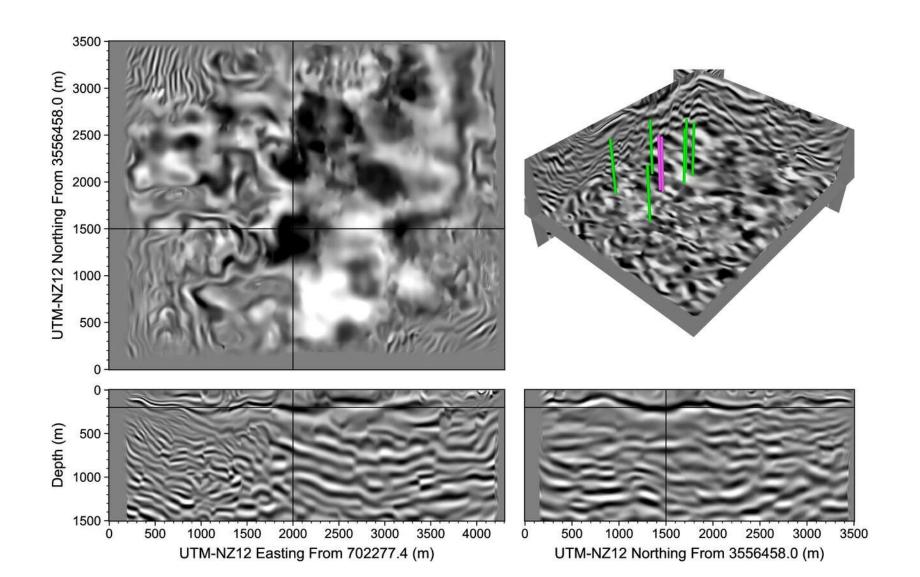
- A 3D active seismic dataset was acquired in 2011 using accelerated weight drop sources.
- Process the 3D seismic data, build a 3D velocity model, and perform reverse time migration.
- Detect faults in the 3D image using machine learning.



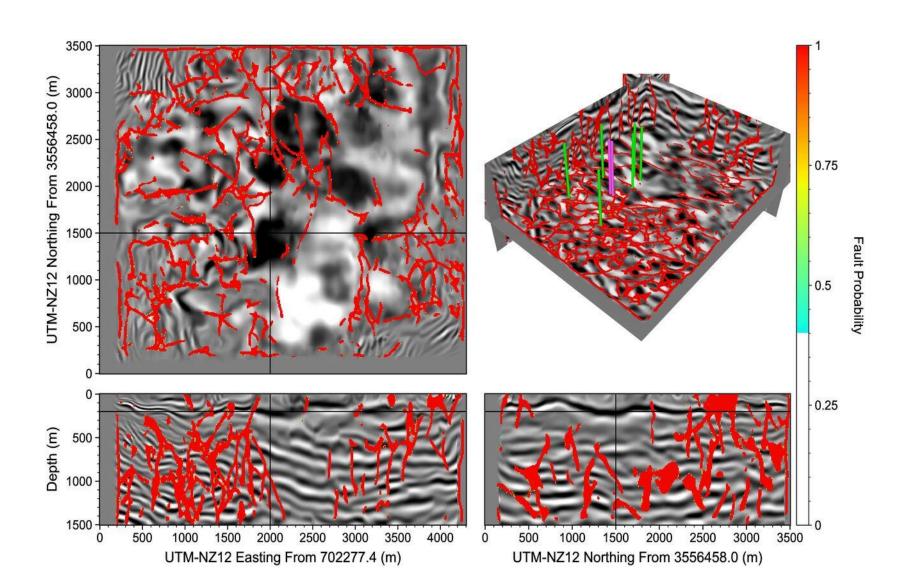
## 3D FWI Velocity Model from 3D Active Seismic Data



## Denoised 3D RTM Image



## Faults Detected on the Denoised 3D RTM Image



## Lessons Learned: Noisy weight-drop source data → NRU denoising

## → Improved fault detection

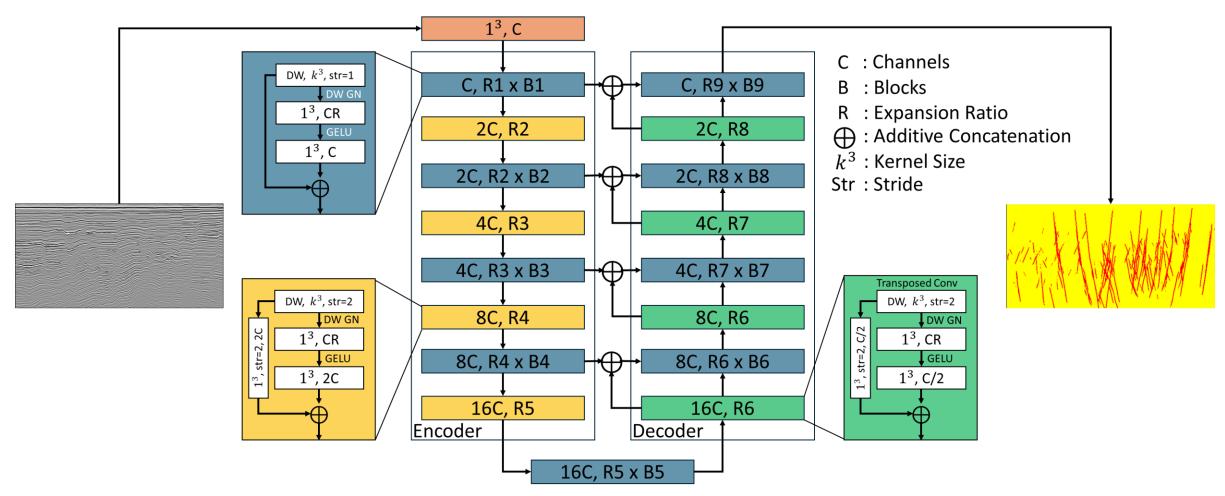
- **Data Quality**: Seismic data acquired using accelerated weight drop sources are highly noisy. Vibroseis sources are recommended to enhance data quality.
- **Geological Structures**: Structural features differ significantly between the east and west sides of the geothermal field, indicating varying subsurface conditions.
- Practical Value: Faults detected on denoised seismic migration images can provide crucial guidance for optimal siting of new injection and production wells.

## Efficient Fault Detection Using ConvNeXt Architecture

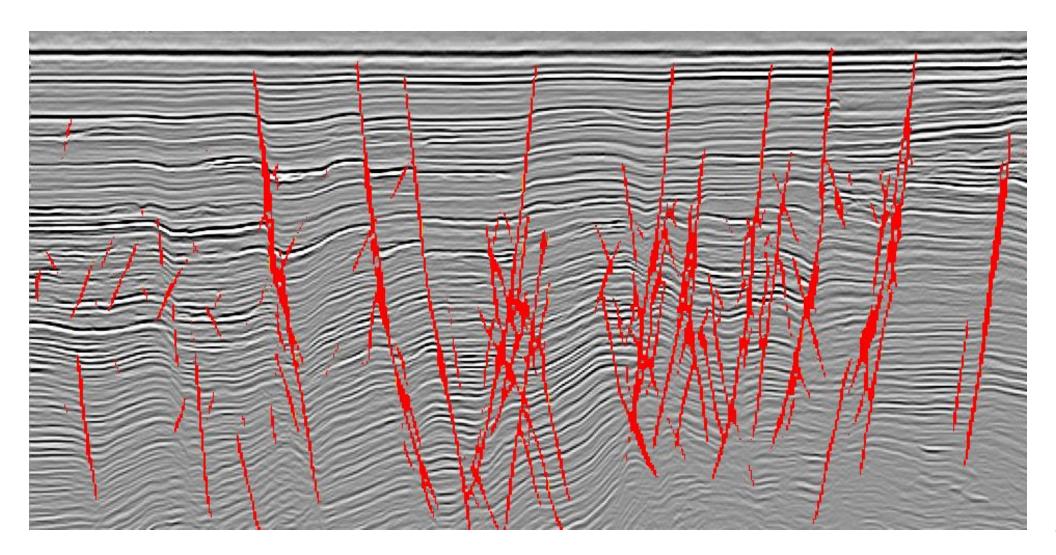
#### Hybrid CNN Architecture (McNease, Huang, et al., 2025):

- Combines CNN and Transformer efficiency
- ~40% faster inference than Res U-Net++
- Requires less training data, achieves high accuracy
- Applied to real seismic datasets (e.g., Opunake, F3)

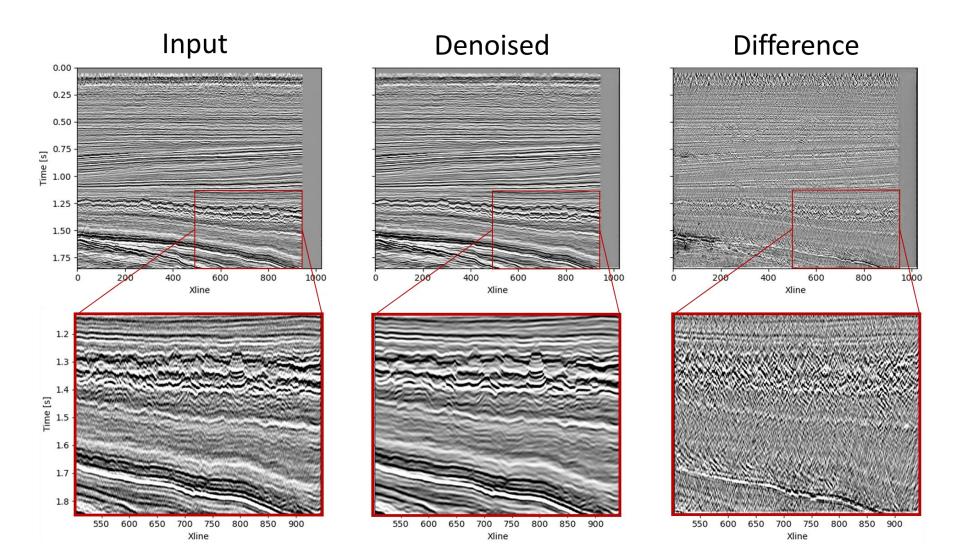
## Efficient Fault Detection Using ConvNeXt Architecture



## An Inline of the Opunake 3D Seismic Image (Real Data)



# ConvNeXt for Efficient Image Denoising (Netherlands Offshore F3 Data)



#### ConvNeXt Fault Detection and Denoising

- ConvNeXt detects subtle faults in complex structures
- Efficient → Deployable on large real datasets

# From static structures (faults) → to dynamic processes (flow)

- Machine Learning for Flow Imaging
- Continuous microseismic data → ML classification (LFLD, FDLD, HFSD, LFSD) → Flow pathways

# Flow Imaging Using Continuous Microseismic Data and Unsupervised ML

#### **Approach**

- Unsupervised 7-layer U-Net on continuous microseismic data
- Classifies low-frequency, long-duration (LFLD) seismic events
- Links LFLD events to fracture flow during hydraulic fracturing

#### **Data Source**

- 18 3C geophones at 4 kHz
- HF-1 and HF-2 stages in Wolfcamp Shale, Permian Basin

(Duan, Huang, et al, IEEE-TGRS, 2024)

#### Flow Event Classification

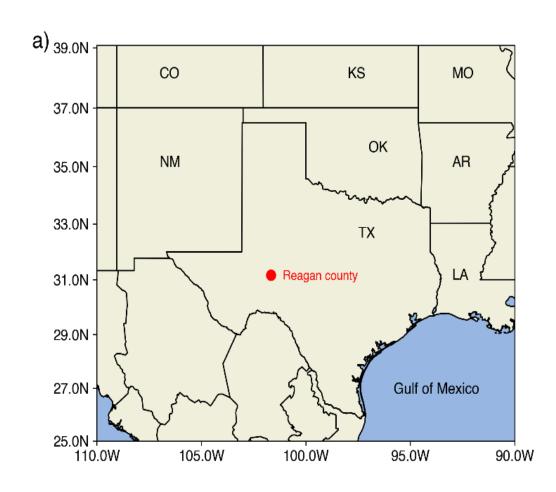
#### **Detected Event Types**

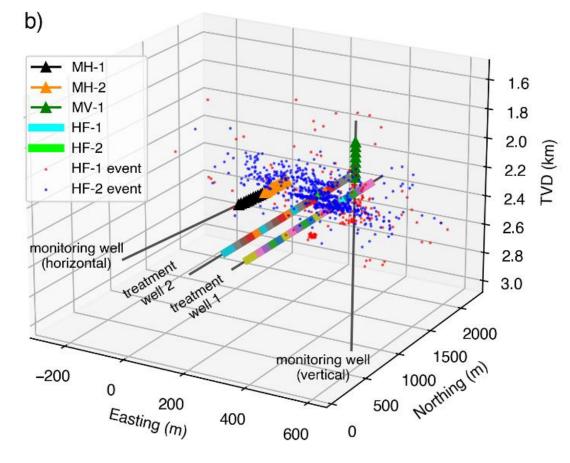
- LFLD: Low-frequency, long-duration
- FDLD: Frequency-drop, long-duration
- HFSD: High-frequency, short-duration
- LFSD: Low-frequency, short-duration

#### **Visualization**

- Correlation with injection data
- Spatiotemporal distributions of LFLD and the others

## Hydraulic Stimulation and Microseismicity

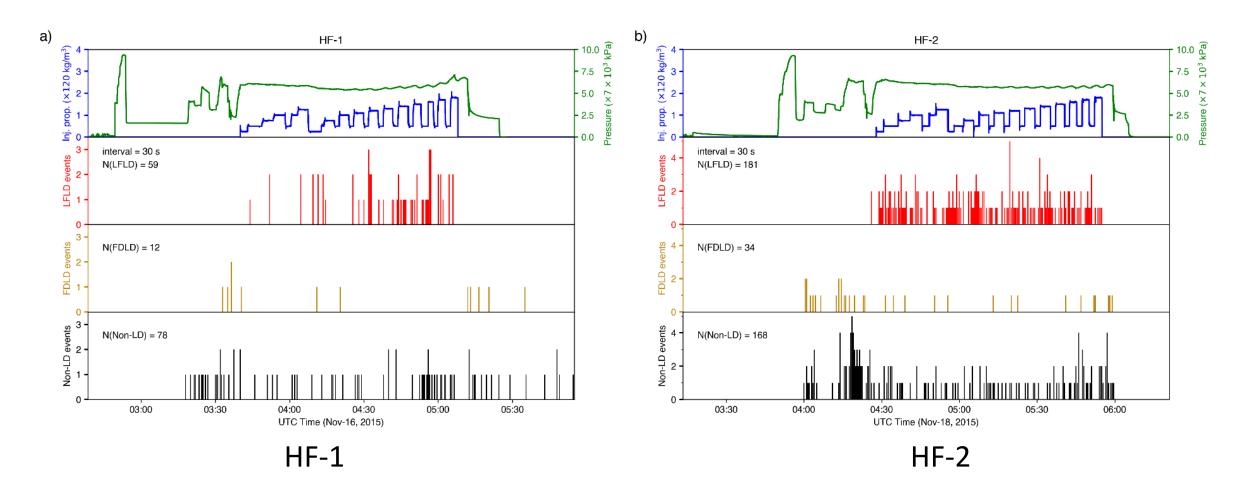




Midland basin, Reagan County, Texas

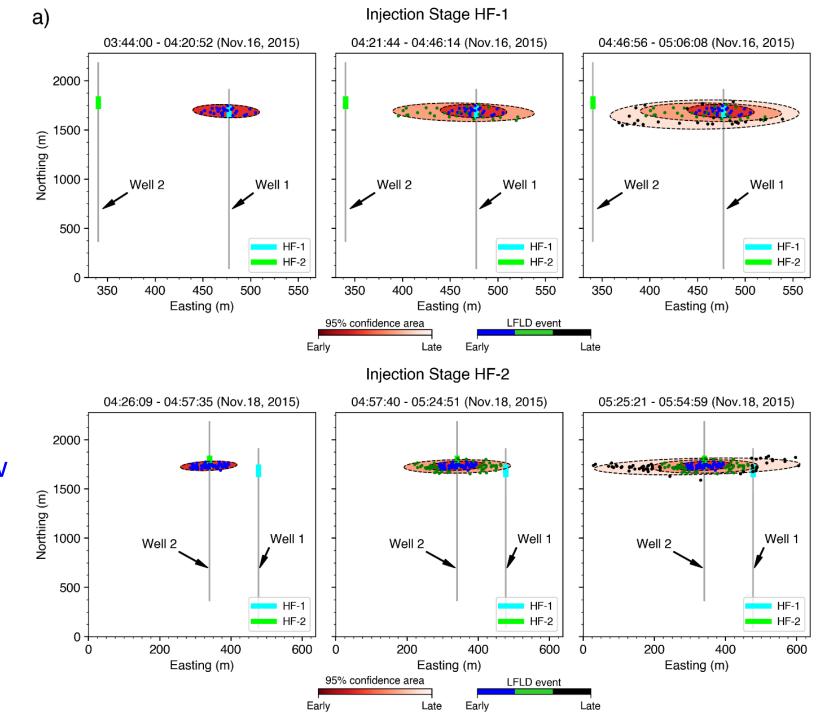
3D view of the fluid injection for hydraulic fracturing

## Comparison of Injected Proppant Density and Pressure with LFLD, FDLD, and Non-LD Event Timings



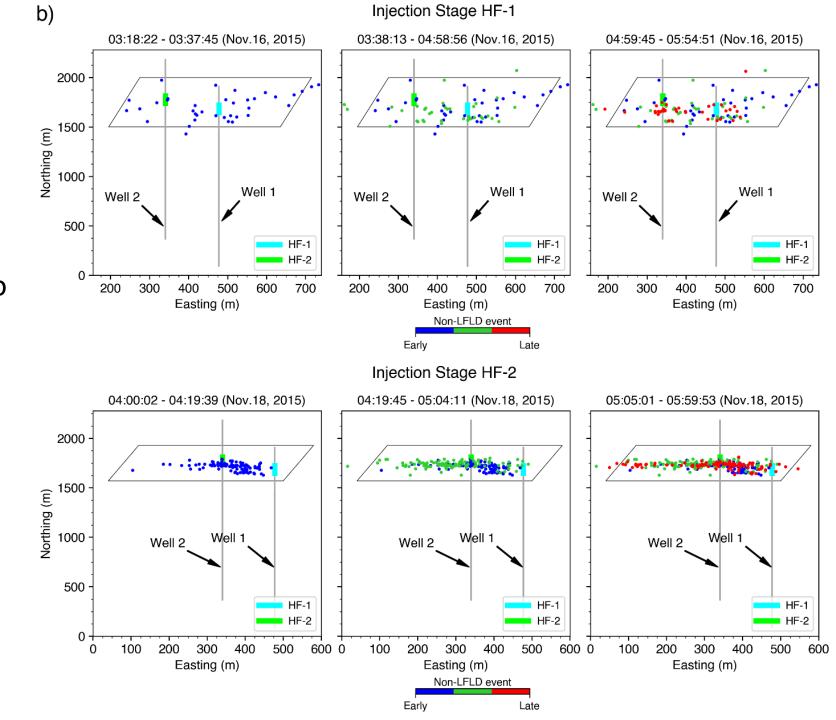
## Spatiotemporal Distribution of LFLD

- Spatiotemporal distributions of LFLD events projected onto an East-North plane.
- Suggests correlation between flow paths and LFLD signals.
- Only LFLD events trace fluid flow

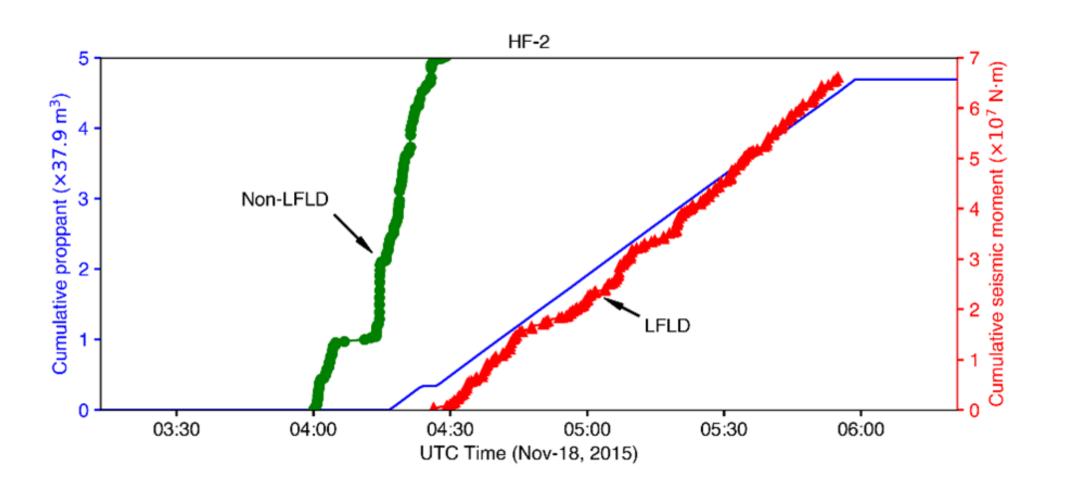


## Spatiotemporal Distribution of non-LFLD

- Spatiotemporal distributions of non-LFLD events projected onto an East-North plane.
- Indicates a lack of correlation between flow paths and non-LFLD signals.



## LFLD Seismic Moment Scales with Proppant Injection, Validating Its Role as a Real-Time Flow Proxy



#### **Conclusions**

- Fault Detection & Denoising: NRU/ConvNeXt improve accuracy, robustness, efficiency
- Flow Imaging: Microseismic ML reveals active flow paths, useful for monitoring
- Faults + Flow: Integrated geothermal reservoir characterization and monitoring

#### Conclusions

- Impact of ML for Geothermal Exploration & Monitoring:
  - **③** Accuracy ↑: Better fault maps
  - **6** Cost ↓: Fewer dry wells

  - **Sustainability** ↑: Optimize reservoir performance

## Acknowledgments

- Supported by DOE through LANL under Contract No. 89233218CNA000001.
- Thanks to collaborators for data and insights.