

Klaus Lackner

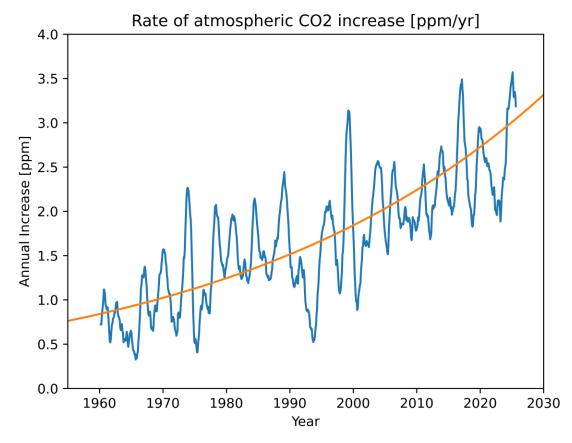
Founding Director, Professor at the School of Sustainable Engineering and the Built Environment September 2025

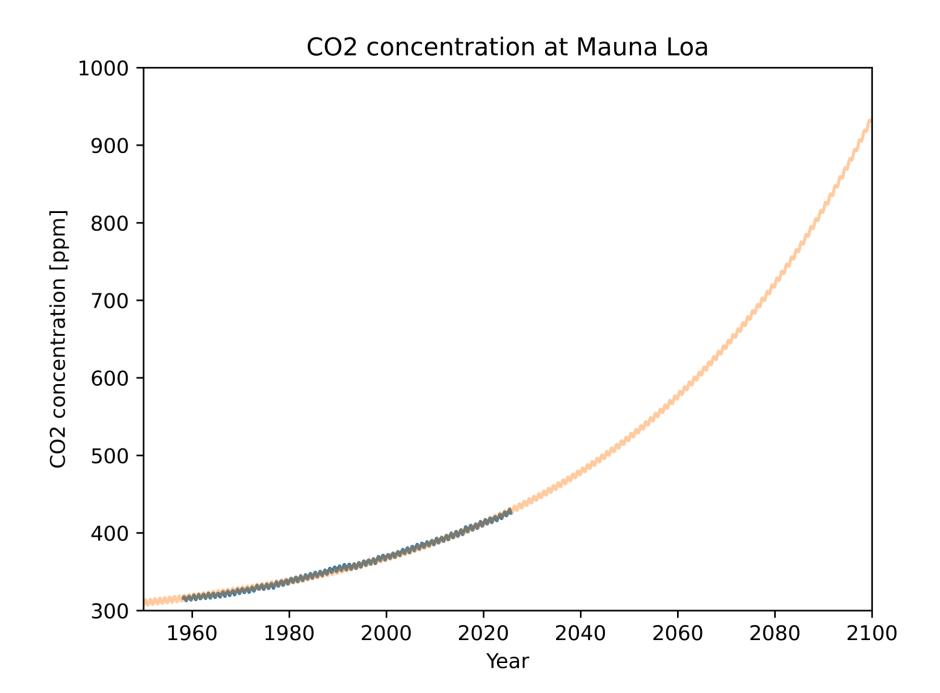
We live in an overshoot world

The world has a finite carbon budget

- Fossil carbon enters the mobile carbon pool from naturally sequestered sources
 - 60 years of current CO₂ emissions exceeds:
 - The preindustrial carbon content of the atmosphere
 - The entire carbon in the biomass, mainly trees
- Excess carbon remains in the atmosphere, ocean, biosphere system
 - Natural recovery through geological processes will take tens of thousands of years
 - Climate-relevant timescale ~10,000 years (climate and ocean acidification)
- Excess carbon is the main driver of climate change
 - Climate forcing of 1 tonne of methane over 30,000 years is dominated by the CO₂ produced

We are not paying back our carbon loan


The world is passing thresholds


- 350 ppm in the air (breached around 1990)
 - Jim Hansen considered this the highest safe CO₂ level
- 1.5-degree warming (breached around 2023)
 - Target set at the Paris Conference in 2015
- Breaching 450 ppm is unavoidable
 - The post-Kyoto long term goal
- Holding the line at 2-degree warming is difficult and unlikely
 - Between 450 and 500 ppm, Paris agreement considered the upper limit acceptable

Tipping points?

CO2 concentration at Mauna Loa 300 | 1950 Year

1.9% compound growth

Net Zero Carbon Economy

- Balancing the carbon budget means net-zero carbon going forward
 - Every ton of carbon coming out of the ground will need to be sequestered
 - Point source capture and Carbon Dioxide Removal from the environment (CDR)
 - Or elimination of all fossil fuels
- Overshoot requires net-negative carbon
 - Additional carbon needs to be sequestered, to compensate for ignored emissions
 - Point source capture and even more CDR
 - Elimination of fossil fuels will not provide net-negative emissions

What are the options?

- Elimination of fossil fuels
 - Renewable or nuclear energy globally
 - Takes time to implement
 - Cannot lower the CO₂ in the air
- Carbon Capture and Storage at Point Sources
 - Reduces emissions but does not fully eliminate them
- Utilization of CO₂ in lieu of fossil fuel extraction
 - Carbon footprint depends on details
 - Utilization can combine with storage (e.g., in carbon-based infrastructure, or through EOR)
 - Carbon from CDR starts out near neutral, carbon from fossil sources still contributes
- Carbon Capture from the Environment for Storage (or utilization with storage)
 - o Can create negative emissions

Carbon Negative Technologies is now unavoidable

- An overshoot over the Paris Climate Target is unavoidable
 - It may already have happened
 - The Rio Target set in 1992 may be even more stringent
- Current world politics will likely slow down action
 - Any delay will worsen the overshoot and ultimately increase the need for CDR
- Carbon removal technologies are not yet ready for scale
 - Current cost, maximum feasible scale, or environmental impacts

A transition in 1980 could have simply phased out fossil fuel

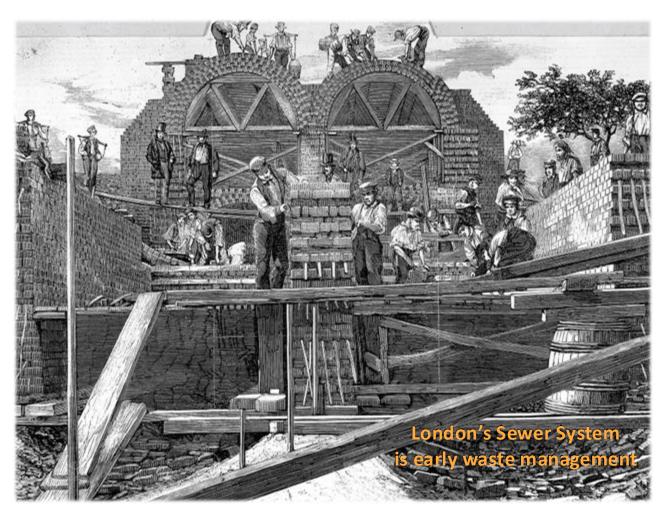
Economic constraints

- Cost of CCS, CCUS, CDR, carbon recycling
 - Must be lower than cost of damages and/or adaptation
 - Better be affordable without destroying the economy
 - Must be cheaper than the alternatives
- Nuclear energy is an expensive but viable alternative
 - Failed to succeed because of cost, safety and security risks
 - Nuclear power is a viable but expensive fallback option
- Renewable energy may prove cheap enough to compete
 - Solar electricity is cheaper than methane chemical energy
 - Intermittency is manageable through batteries and synthetic liquid fuels

Affordability Thresholds

- \$100/tonne of CO₂ avoided:
 - \$0.85 on the gallon of gasoline
 - \$40/bbl of oil
 - 3 to 10¢ / kWh
- Renders nuclear energy competitive
 - Failed to succeed in the past because of cost, safety and security risks
 - Carbon premium closes the gap
- Renewables, especially photovoltaic electricity
 - Are competitive, but need to manage intermittency

Photovoltaic power will challenge fossil energy even without carbon constraints!


- It is the cheapest source of electricity
- Its energy can be stored in liquid fuels
- Cheap storage and easy transport

Pixabay stock

Eliminating the need for fossil fuels ...

...or neutralize their waste?

Waste problems have been solved before

- Waste management is a lucrative service industry that need to be built
- CO₂ waste is global and can be addressed globally
- Carbon recycling will be driven by the cost of waste disposal

https://commons.wikimedia.org/wiki/File:The_main_drainage_of_the_Metropolis_Wellcome_M0011720.jpg

CO₂ is the waste stream from fossil fuels

- Cleanup requires a balance between extraction and sequestration
 - Balance need not to be at a single point in time and space
 - Net zero can be achieved through the environment
- Sequestration must last on climate relevant time scales
 - Polluter pays + intergenerational equity
 - Difficult for most utilization
- Net negative carbon economies require CDR technologies
 - Can balance out past emissions and emissions difficult to capture at the source

For every ton of fossil carbon extracted a ton needs to be stored

CO₂ is the waste stream from fossil fuels

- Cleanup requires a balance between extraction and sequestration
 - Balance need not to be at a single point in time and space
 - Net zero can be achieved through the environment
- Sequestration must last on climate relevant time scales
 - Polluter pays + intergenerational equity
 - Difficult for most utilization
- Net negative carbon economies require CDR technologies
 - Can balance out past emissions and emissions difficult to capture at the source

For every ton of fossil carbon extracted a ton needs to be stored

Waste management: Collection and Disposal

Collection

- Point sources: power plants, steel plants, cement plants, ...
- Distributed sources: atmosphere, biosphere, hydrosphere

Disposal or Storage:

- Geological storage
- Mineral storage
- Ocean storage
- Biomass storage
- Soil storage
- Storage in the built infrastructure

What scale do we need?

- 40 Gt/yr three different ways
 - Roughly current rate of emissions
 - Emissions at the end of the century of carbon intensity is reduced fivefold
 - Lowering CO₂ in the atmosphere by 100 ppm over 40 years
- How much time do we have?
 - 0 10 years?
 - o 50 years?
 - 100 years?

At this scale even "natural" solutions turn technical

Biological Approaches

- 40 Gt CO2/yr
 - More sunlit area than all of agricultural land
 - Conversion of biomass to stable carbon adds cost and loses carbon
- Competes for land with food production
- Large environmental footprint

Great help in the beginning but technological approaches are needed

What makes for good carbon collection and disposal?

- Permanence
- Accountability
- Minimal environmental footprint
- Public acceptance

What will motivate action?

Paying for carbon emission or removal?

- A "zero" emission requirement is not compatible with taxing emissions
- A removal requirement is sufficient, and will set a carbon price
- Waste management demands a regulatory approach
- Carbon utilization will never be big enough
 - For carbon recycling to solve the problem, fossil fuels would have to be phased out
 - Carbon utilization can lower waste management costs
 - However, carbon dioxide production is too large to utilize

Zero waste is a far-off goal

Who should be responsible for carbon?

- Producer responsibility vs. Emitter responsibility
 - Scope 0 vs. Scope 1, 2, 3
- Simplest and cleanest approach
 - Fossil fuel extractors take care of carbon sequestration and render their product carbon neutral
 - No Life Cycle accounting of carbon
 - Market decides who pays

Why has it not happened yet?

- Fossil fuel extractors and end consumers have been exempted
 - Scope 1 pushes the problem to the physical emitter
 - Scope 2 clears the power plants and fuel producers
 - Scope 3 exempts the end consumer
- Scope 0 is what comes out of the ground
 - o It is well documented, and by matching it with sequestration all emissions can be balanced

Did it help the oil companies?

- Roughly 40% of a barrel of oil is consumed by automobiles
- This market is about to vanish
- Counterfactual scenario
 - In 2000 oil companies accepted responsibility for carbon, and solved the problem
 - Tesla's customer basis would not have been there, no Tesla, no BYD
 - This is a real opportunity cost to the oil companies
 - Carbon management is a real market (ask OXY)

Will it ever happen?

- Oil is ceding its top position to tech
 - None of the top ten listed companies in the US are oil companies
 - Tech companies are working on carbon management, but is a distraction
 - With their growing power, carbon takeback will become more popular

Market pull from regulations?

- Waste removal is a public good
 - It must become a requirement
 - Markets can deliver waste removal
- Carbon Storage needs to be certified
 - So that it is trusted and its value understood
- Markets deliver efficiency and low cost
 - The cost of disposal makes reuse of carbon more competitive

All markets are regulated