

Klaus Lackner

Founding Director, Professor at the School of Sustainable Engineering and the Built Environment September 2025

Net Zero Carbon Economy

Three Rules for Technological Fixes

D. Sarewitz and Richard Nelson (Nature, 2008, 456, 871-872)

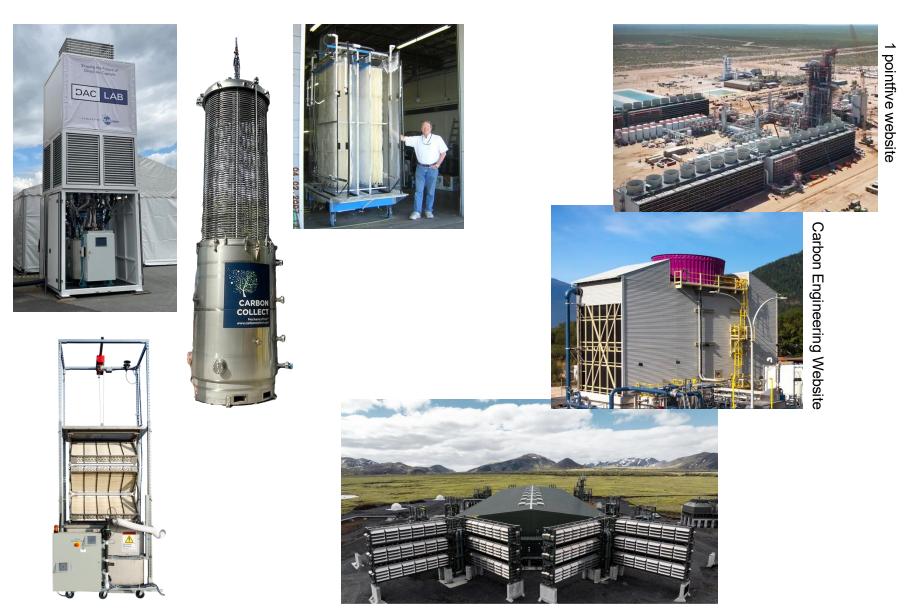
- . The technology must largely embody the cause-effect relationship connecting problem to solution.
- II. The effects of the technological fix must be assessable using relatively unambiguous or uncontroversial criteria.
- III. Research and development is most likely to contribute decisively to solving a social problem when it focuses on improving a standardized technical core that already exists.

"In contrast, direct removal of CO₂ from the atmosphere — air capture — satisfies the rules for technological fixes. Most importantly, air capture embodies the essential cause—effect relations — the basic go — of the climate change problem, by acting directly to reduce CO₂ concentrations, independent of the complexities of the global energy system (Rule I). There is a criterion of effectiveness that can be directly and unambiguously assessed: the amount of CO₂ removed (Rule II). And although air-capture technologies have been remarkably neglected in both R&D and policy discussions, they nevertheless seem technically feasible (Rule III)."

CDR = Carbon Dioxide Removal = Extraction from the mobile carbon pool

Biosphere extraction

- Carbon removal via biomass will affect atmosphere in short order
- Low-cost option but limited in scope
- Siting limitations and scale limitations


Ocean extraction

- Thermodynamically equivalent to air capture
- Immediate impact on the atmosphere
- Carbon dilution in the ocean 1:26,000

Air extraction (Direct Air Capture or DAC)

- Fastest mixing times
- Dilution 1:2,500
- No siting limitations no scale limitation
- Cost must come down tenfold!!

DAC Systems

Climeworks Website

Direct Air Capture

- Chemical process technology for extracting CO2 from ambient air
 - Distinct from photosynthetic (biological) systems
 - It collects carbon dioxide for use, disposal or both
 - CO₂ is available everywhere
- DAC separates sources from sinks
 - Allows for capture from diffuse sources
 - Cars, trucks, ships, airplanes
 - Boilers etc.
 - Past emissions

Direct Air Capture: Closing the Carbon Cycle on the Teratonne-Scale

- Air capture can produce feedstock for fuels and chemicals (DACCU)
 - Current rate of oil consumption generates 1.5 Teraton CO₂ in the 21st century
 - DAC can promote solar energy to become the dominant primary energy source
- Air capture can collect waste from past and future emissions (DACCS)
 - Collecting 100 ppm from the atmosphere requires 1.5 Teraton of CO₂ capture
 - Sequestration cannot be avoided anymore
- What else can reach this scale? (Trillion-dollar annual revenue industry)
 - Without competing with food production
 - Without large environmental footprints

Technical Feasibility of DAC

- Plenty analogs that demonstrate technical feasibility
 - Carbon dioxide removal on submarines and space craft
 - Stripping CO₂ and H₂O from air for cryogenic air capture
 - Flue gas scrubbing for scale, but much higher concentrations
- DAC requires very different optimization
 - Extract CO₂ from air rather than clean it out
 - 100 to 300 times higher dilution than in flue gas capture

What is taking so long?

- Too different from established technologies
 - Heavier-than-air flight and direct air capture are (nearly) impossible with off-the-shelf technology

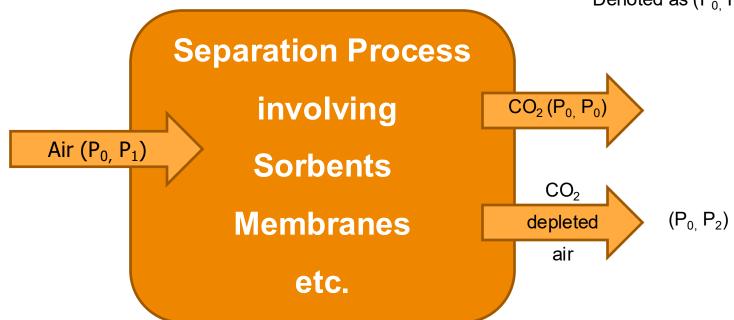
Lack of market pull

Feasibility & Affordability?

CO₂ in air is dilute, and air is full of water

- Sherwood's relates costs scale linearly to dilution
- The air carries 10 to 100 times as much H₂O as CO₂
- First-of-a-kind apparatus is expensive (~\$1000/tonne)

First: CO₂ in the air is not too dilute!

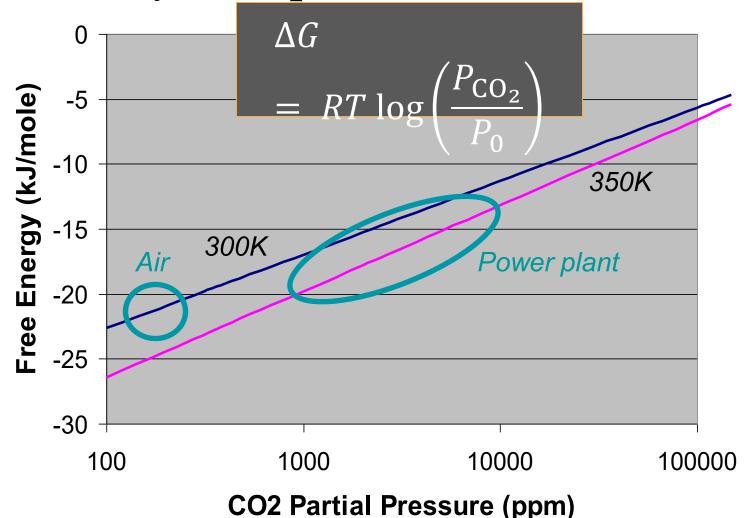

- One cubic kilometer of air
 - Passes through a windmill in the course of an afternoon
 - Carries \$300 of kinetic energy
 - assuming a wind speed of 6m/s and a value of 5¢/kWh
 - Carries \$21,000 of CO₂
 - assuming a tipping fee or commodity value of \$30/ton

As a source of CO₂, the air is 70 times more valuable than as a source for wind energy. Wind energy is routinely harvested

Second: Thermodynamics is not limiting

Theoretical minimum free energy requirement for the regeneration is the free energy of mixing

Total gas pressure P_0 CO_2 partial pressure P_x Denoted as (P_0, P_x)

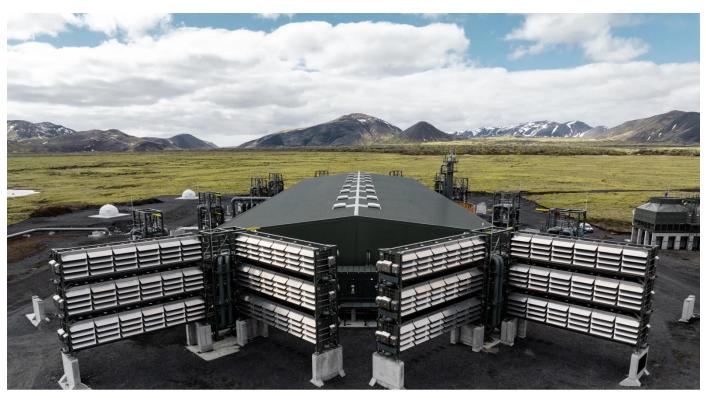

$$\Delta G = RT \left(\left(\frac{P_0 - P_2}{P_1 - P_2} \right) \frac{P_1}{P_0} \ln \frac{P_1}{P_0} - \left(\frac{P_0 - P_1}{P_1 - P_2} \right) \frac{P_2}{P_0} \ln \frac{P_2}{P_0} + \left(\frac{P_0 - P_1}{P_0} \right) \left(\frac{P_0 - P_2}{P_0} \right) \frac{P_0}{P_1 - P_2} \ln \frac{P_0 - P_1}{P_0 - P_2} \right)$$

Air capture is sorbent based*

- Sorbents bind CO₂ without need for spending energy on the air
 - Concentration ratio is 1 : 2500
 - Sorbents postpone work to the regeneration step, only do work on CO₂
- All air capture sorbents are chemical sorbents
 - \circ At 400 ppm only chemical bonds are strong enough, $|\Delta G| > 22 \text{ kJ/mol}$
- Today's air capture sorbents exploit carbonate chemistry
 - Alkali hydroxides
 - Weak and strong based amines
 - Thermal, vacuum and reaction-based recovery
 - Humidity swing takes advantage of H₂O CO₂ sorbent reactions
- Solid sorbents deliver better kinetics

Required Sorbent Strength

depends logarithmically on CO₂ concentration at collector exit

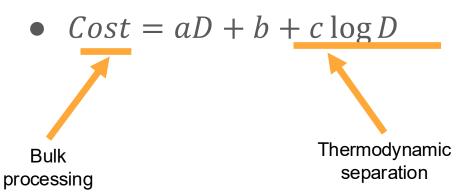


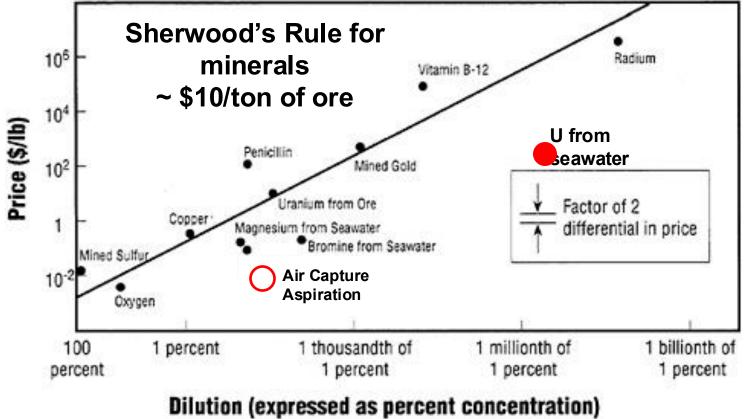
Disagrees with Sherwood's Rule

Third: Direct Air Capture is too expensive

- Tax incentives (45Q, LCFS in the US and California) provide about \$200/tonne
- No DAC company is currently selling actual credits on this basis

\$250 to \$1,000/tonne


Climeworks Website


Sherwood's Rule is avoidable

Cost of separation scales linearly with dilution D

Sherwood's Rule

 The cost of the first step in the separation dominates

SOURCE: National Research Council (1987)

Artificial kelp to absorb uranium from seawater

- Passive, long-term exposure to water
 - Braids of sorbent covered buoyant plastic
 - Anchored to the floor
 - Replaced initially active systems
- Low energy sorbent
 - Laminar flow over sorbent
 - Uptake is limited by boundary layer transport
- Regeneration
 - After harvesting the strings
- Gross violation of Sherwood's Law
 - Cost estimates range from \$200 to \$1200/kg
 - Sherwood \$3 million/kg

Artificial kelp to absorb uranium from seawater

$Cost = a D + b + c \log(D)$

- Passive, long-term exposure to water
 - Braids of sorbent covered buoyant plastic
 - Anchored to the floor
 - Replaced initially active must make parameter a small
- Low energy sorbent
 - Laminar flow over sorbent
 - Uptake is limited by boundary layer transport
- Regeneration
 - After harvesting the strings
- Gross violation of Sherwood's Law

 Cost estination of Sherwood's Law

 Sherwood \$3 million/kg

 Gross violation of Sherwood's Law

 April Capture circumvents

passive systems!

Sherwood's Rule

Irreducible Cost

- Raw inputs and outputs
 - provide lower bounds on costs that exclude inefficiencies, friction, and dissipation
- Lower bound
 - The difference between initial costs and the frictionless limit can be large and may never go to zero.
- Irreducible cost per tonne
 - \circ Thermodynamic requirement (separation and compression) 215 kJ \rightarrow \$2.15 ... \$10.75
 - Sherwood's rule does not change it
 - Equipment cost \$10-20/kg
 - Sorbent captures 3 mol/kg, cycle time 1000 sec, sorbent 1/3 of total mass
 - 10%/yr discount rate
 - \$0.70 to \$1.50/tonne
- Land use cost is insignificant

\$10 - \$20/tonne
This is what learning could aim for

Air Capture can avoid Sherwood's Rule

artist's rendering

Image courtesy Stonehaven production

DAC need not crush or grind air

Dominant cost is sorbent regeneration

somewhat more energetic than

> flue gas sorbent recovery

Wind energy ~20 J/m³

CO₂ combustion equivalent in air 10,000 J/m³

much more than equally sized windmill

Extracting kinetic energy from air at 20 J/m³ is feasible

Contacting of air can be inexpensive

Regeneration cost are slightly larger than for flue gas scrubbing

Cost of DAC is important

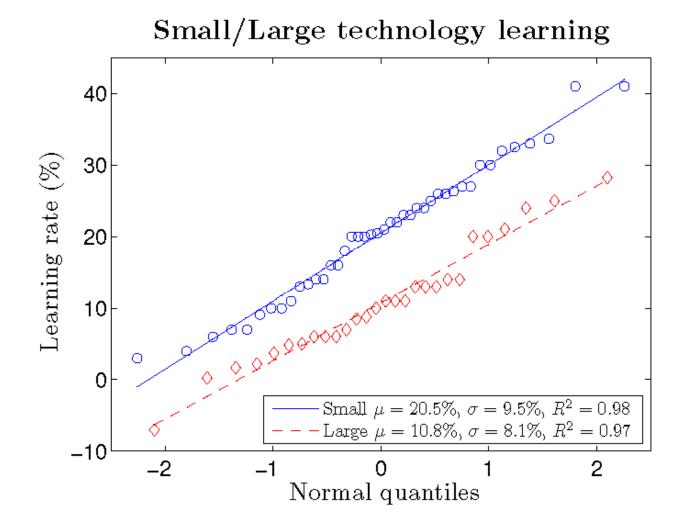
- Policy and consumers ultimately care about price
 - Difference between price and cost can be huge
- It is future costs not today's costs that matter
 - Huge cost reductions are common
- Unfortunately, cost is a slippery concept
 - Costs today are very different from costs tomorrow
 - Supply chain costs are other producers' prices
 - Supply chain costs respond to demand

How to maximize the odds

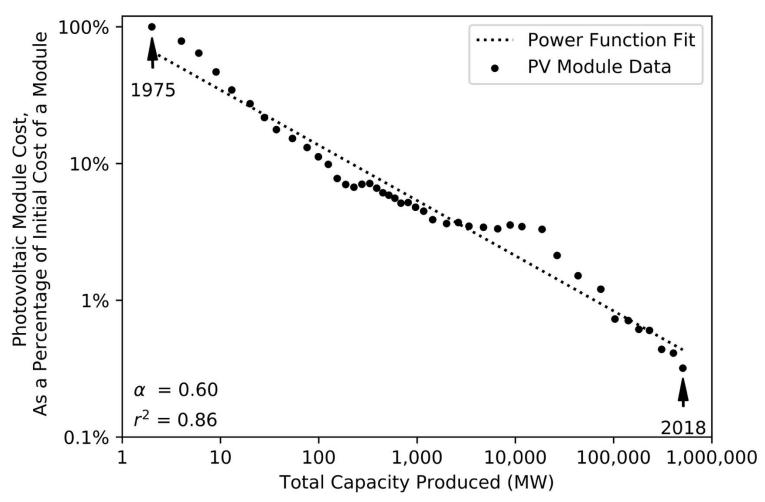
Cost under mass production – The learning curve

- o Doubling cumulative output lowers the reducible part of the cost by a factor $\varepsilon \sim 0.8$
- \circ $L = 1 \varepsilon$ is known as the learning rate

$$k(n) = c(n) + r$$


$$c(n) = c_1 \varepsilon^{\log_2 n} = c_1 n^{\log_2 \varepsilon}$$

$$\log_2 \varepsilon = \alpha - 1$$


k(n) is the cost of the n^{th} unit (k(1) = \$500/t) r is the irreducible cost (r = \$30/t) c(n) follows a power law $c(n) = c_1 n^{\alpha - 1}$ α is the power coefficient that relates total cost to cumulative size of production

Learning works better for small units

• Range of learning coefficients $(1 - \varepsilon)$ changes with size

Solar Energy Costs are Dropping Fast

Habib Azarabadi, ASU

Growing a million-fold, the cost of solar energy dropped 100-fold

Industries forced into modularity often do well

- Automobile industry
- Smart phone industry
- Solar photovoltaic industry
- Wind industry (?)

Cost reductions are faster in numbering up
Risks are reduced
Response to market changes is flexible
Multiple approaches can be tested

Demand Curves

Market avoids stalling if

$$k(n) < P(n)$$
 for all n

With n_d (P), the demand curve and $n_c(P)$ the inverse cost curve, The equivalent statement is

$$n_d(P) \ge n_c(P)$$
 for all P

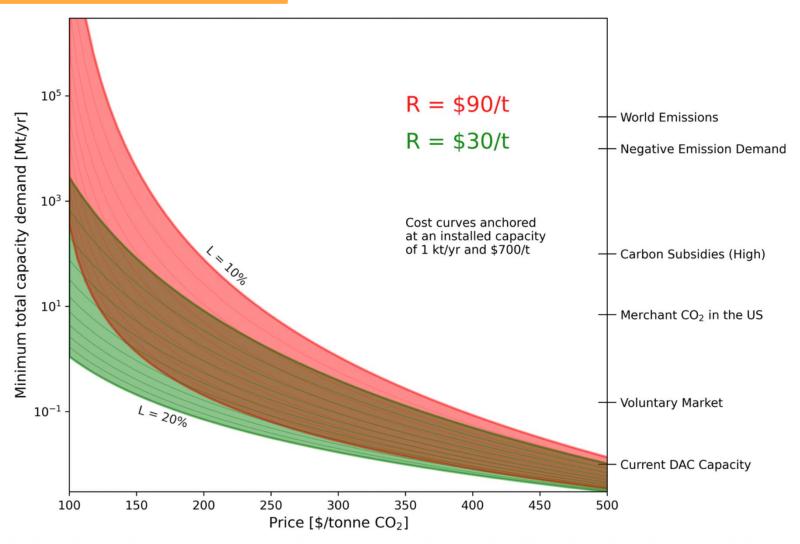
$$n_d(P) \ge \left(\frac{P - R}{c_1}\right)^{-\frac{1}{\alpha}}$$

Attributes of a good DAC technology

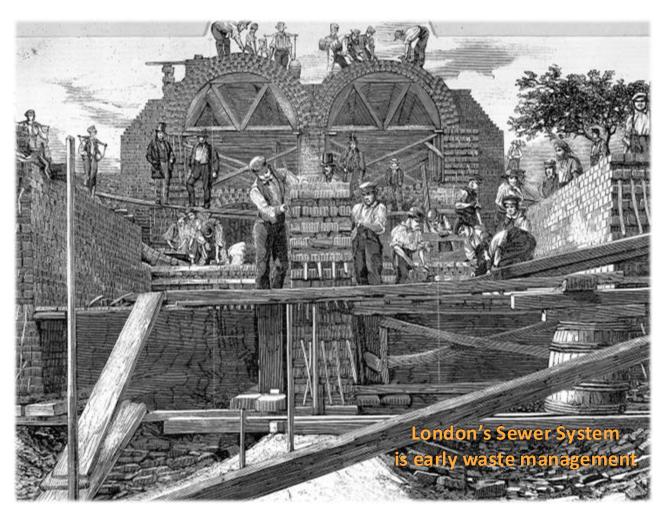
- Low starting cost
 - Low capital and maintenance
 - Low energy inputs
- High learning rate
 - Rates vary across industries and technologies
- Low irreducible cost
 - For normal scaling costs should be acceptable at a 1000-fold increase
 - Climate action requires million-fold increase which means operation near the limit
 - Winners are impossible to predict

Experiment with many different approaches

Many small startups probe the technology space


Enable scaling by a modular approach

What scale do we need?


- 40 Gt/yr three different ways
 - Roughly current rate of emissions
 - Emissions at the end of the century of carbon intensity is reduced fivefold
 - Lowering CO₂ in the atmosphere by 100 ppm over 40 years
- How much time do we have?
 - 10 years?
 - o 50 years?
 - o 100 years?

At this scale even "natural" solutions turn technical

Learning rates matter

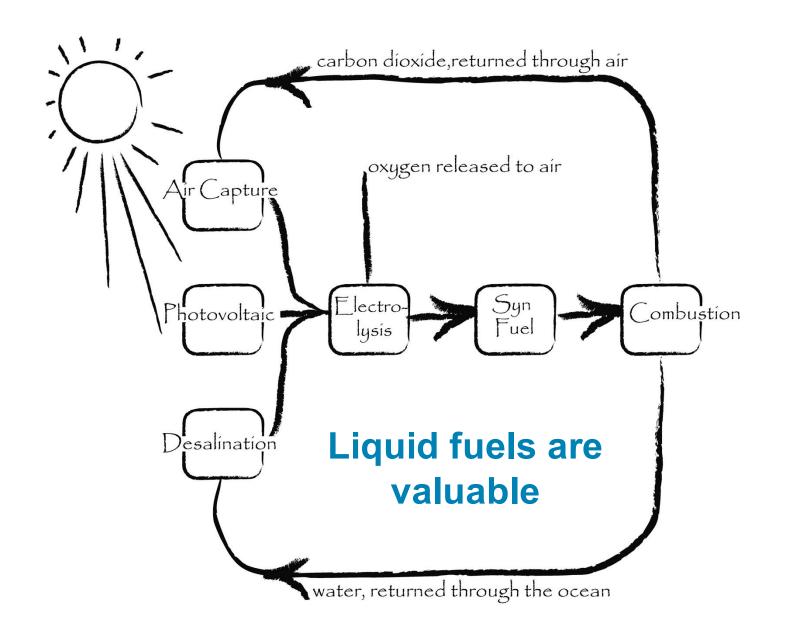
Waste problems have been solved before

- Waste management is a lucrative service industry that need to be built
- CO₂ waste is global and can be addressed globally
- Carbon recycling will be driven by the cost of waste disposal

https://commons.wikimedia.org/wiki/File:The main drainage of the Metropolis Wellcome M0011720.jpg

DAC provides Carbon Capture of last resort

- Its advantage is it can be done anywhere and for any emissions
 - Likely operates where CO2 is needed or energy is available
- Unless there is no need for DAC, it will set the price of carbon
 - Harsh commodity business, but so are many other necessities
- Net negative carbon economies require CDR technologies
 - Can balance out past emissions and emissions difficult to capture at the source
 - DAC offers the possibility of returning carbon to the developing countries


Photovoltaic power will challenge fossil energy even without carbon constraints!

- It is the cheapest source of electricity
- Its energy can be stored in liquid fuels
- Cheap storage and easy transport

Pixabay stock

Carbon emissions and fossil fuels can separate

Technology usually succeeds if asked to deliver

- The first aircela machine
 - Taking CO₂ from air, water and electricity to make gasoline
 - Designed for Photovoltaic Power