

CO₂ Capture Technologies – An Overview

Prof. Rob Braun

Department of Mechanical Engineering College of Engineering & Computational Sciences (http://aes.mines.edu)

Whole Value Chain Carbon Capture, Utilization, and Storage (CCUS)

October 15, 2018

Advanced Energy Systems Group

Presentation Outline

Earth • Energy • Environment

Colorado School of Mines

I. Sources of CO₂ and Decarbonization Routes

- A. Global emissions and Decarbonizing the energy infrastructure
- B. Sources of CO₂ and Thermodynamics
- C. Appreciating the scale

II. Types of CO₂ Capture Technologies

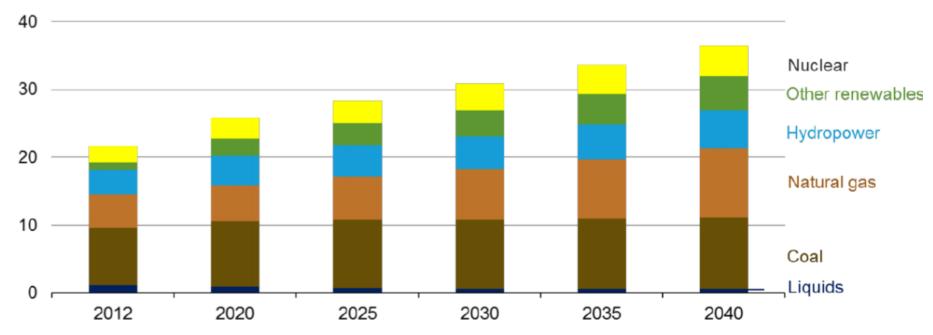
- A. Pre- and Post-combustion capture
- B. Negative carbon emissions (DAC and BECCS)
- C. Challenges and Drivers

III. Status of CC & Next Generation Capture Technologies

- A. TRLs, Projects and Demonstrations
- B. Other Tech Carbonate fuel cell systems

IV. Summary Thoughts – A Systems Perspective

Future of World Net Electricity Generation by Source



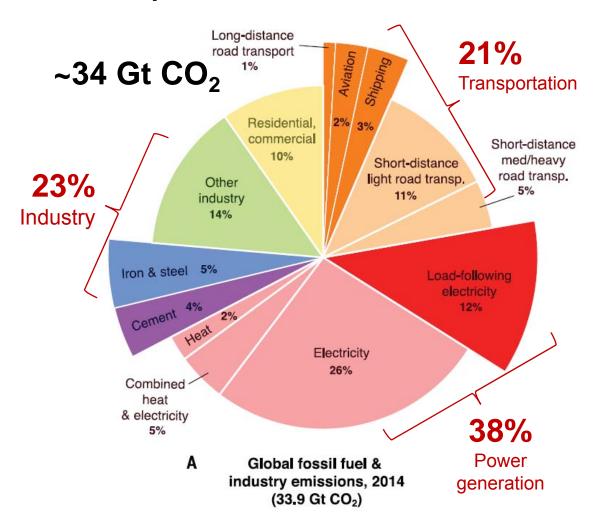
Earth • Energy • Environment

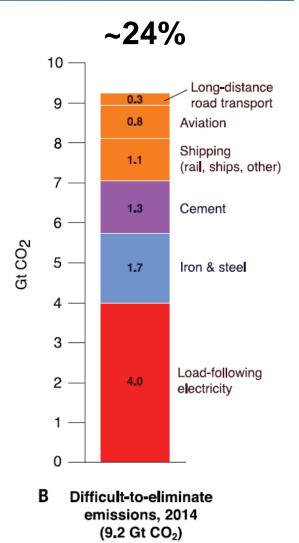
Colorado School of Mines

- Fossil use remains high with renewables growing
- In conflict with today's tech trends
 - Phase out of IC engines seemingly imminent (France, U.K., Sweden,...)
 - Coal power generation down, huge adoption of RE technology in U.S.
 - Large gas turbine sales down (Siemens and GE)

trillion kilowatthours

EIA, International Energy Outlook, 2016 R. Gupta, Sustainable power production, ASME ES 2016

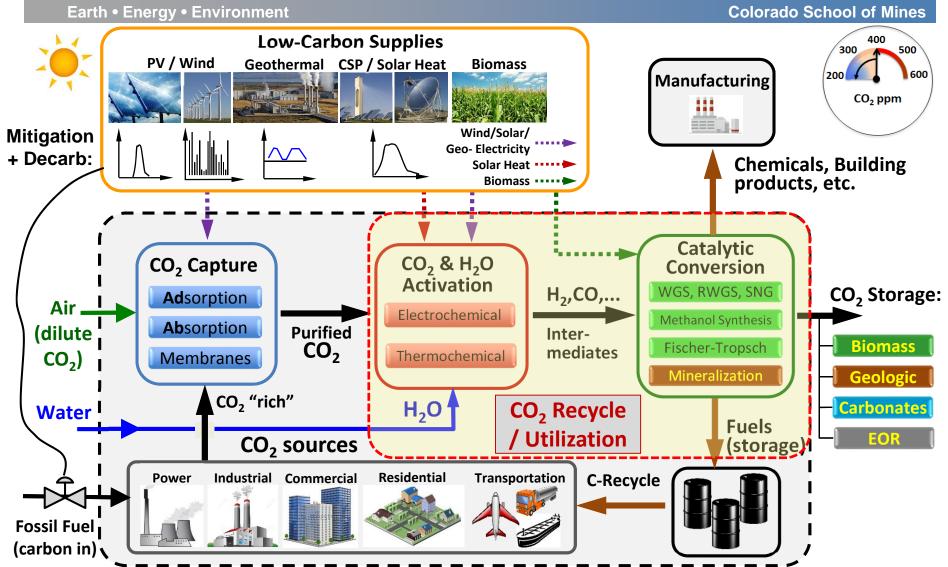



A snapshot of global CO₂ emissions - 2014

Earth • Energy • Environment

Colorado School of Mines

■ 2018 on pace to set record emissions

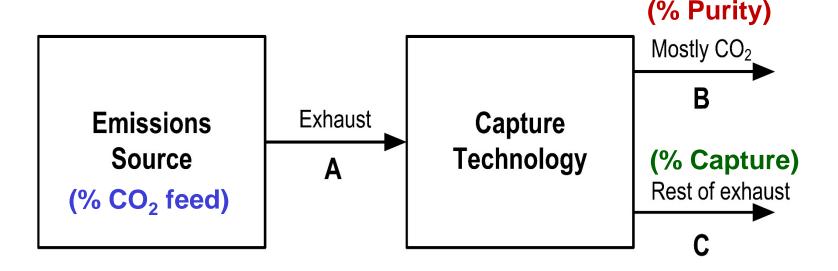

How to Reduce CO₂ Emissions To Meet <2°C threshold?

> Let's take a systems-level view first

Decarbonization of energy supply chains for closed-carbon cycle (neutrality) and increased renewables

The majority of CO₂ sources are moderate to extremely dilute

Earth • Energy • Environment


Category	% CO ₂ (vol)	Example
High Pressure	varies	Gas Wells (e.g., Sleipner) Synthesis Gas (e.g., IGCC)
High Purity	90-100%	Ethanol Plants Ammonia
Dilute to Moderate	10-15%	Coal-Fired Power Plants → ~ 40% of emission
Very Dilute	3-7%	Natural Gas Boilers Gas Turbines → ~ 20% of emission
Extremely Dilute	0.04 – 1%	Ambient Air ~ 25% of emission (transport sector

Thermodynamics sets the *minimum* work requirements for separation processes

Earth • Energy • Environment

Colorado School of Mines

Desired Purity

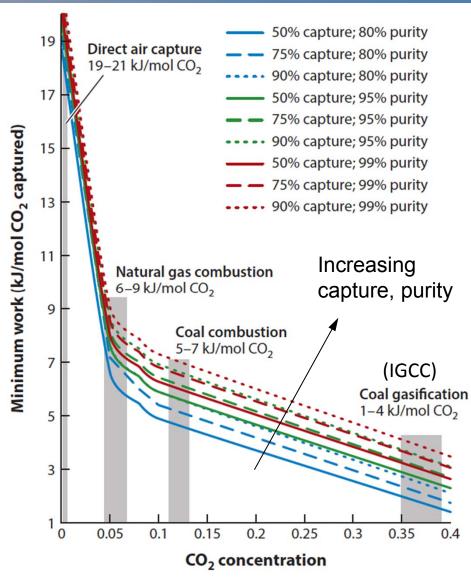
% Capture amount

$$W_{\min} = RT \Big[n_B^{CO_2} \ln(y_B^{CO_2}) + n_B^{B-CO_2} \ln(y_B^{B-CO_2}) \Big] + RT \Big[n_C^{CO_2} \ln(y_C^{CO_2}) + n_C^{C-CO_2} \ln(y_C^{C-CO_2}) \Big]$$

$$-RT \Big[n_A^{CO_2} \ln(y_A^{CO_2}) + n_A^{A-CO_2} \ln(y_A^{A-CO_2}) \Big]$$
*for constant pressure

% CO₂ in source

The minimum work of separation decreases with increasing CO₂ concentration


Earth • Energy • Environment

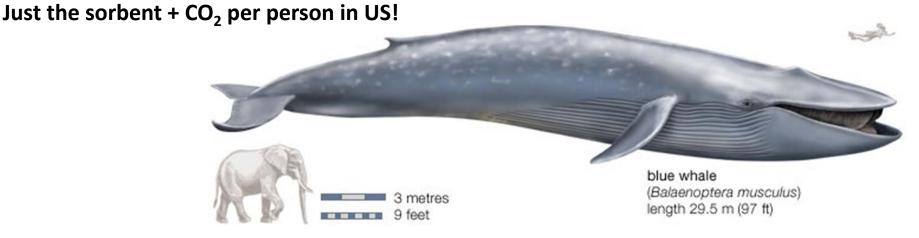
Colorado School of Mines

- Energy scales with dilution
 - Can amount to 10% of power produced
- DAC is about ~20 kJ/mol CO₂, regardless of % capture and purity
- Natural gas and coal range from 5-9 kJ/mol

Other notes:

- Density changes with purity $95\% \text{ CO}_2 + 5\% \text{ N}_2 = 681 \text{ kg/m}^3$ $80\% \text{ CO}_2 + 20\% \text{ N}_2 = 343 \text{ kg/m}^3$
- ~0.5 kJ/mol CO₂ additional compression energy!




Appreciating the per capita scale of carbon capture

Earth • Energy • Environment

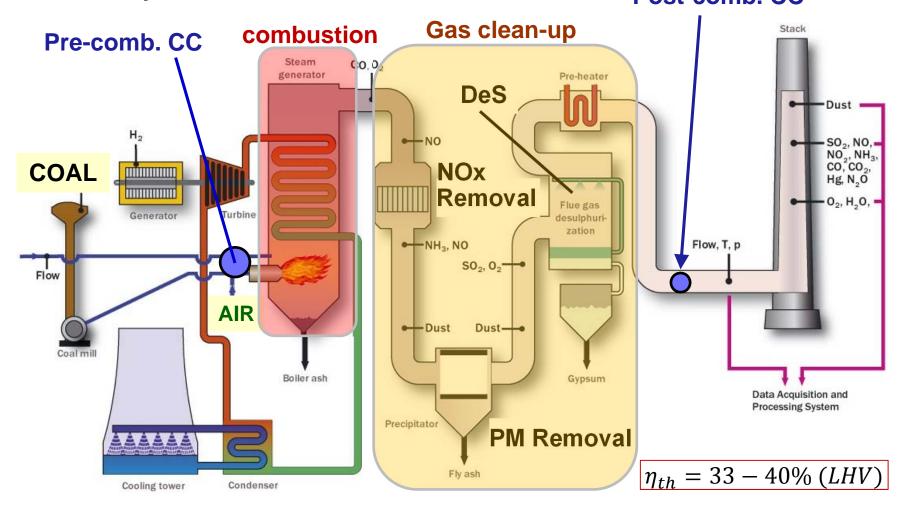
- US population ≈ 320,000,000
- **■** CH population ≈ 1,370,000,000
- Annual emissions per capita:
 - US ≈ 16 tons CO₂
 - CH \approx 7 tons CO₂
- Depending on sorbent loading and performance (cycling)
 - 16 tons → total 150 tons material

The world will need 100 carbon capture and storage (CCS) plants by 2020 and 3400 by 2050 in order to reduce greenhouse gas emissions by 50%.

That equates to building a CCS plant every three days from 2020.

-International Energy Agency

Conventional Coal-Fired Power Plant



Earth • Energy • Environment

Colorado School of Mines

 Technology is down-trending significantly, but total elimination in next 20-yrs is doubtful.

Post-comb. CC

Carbon Capture (CC) Strategies: Post-Combustion (Retrofit-end of pipe)


Earth • Energy • Environment

Colorado School of Mines

2-separation processes

Coal + Air \rightarrow CO₂ + H₂O + N₂ + Contam. +Heat

(Fuel)

Key Challenges:

- Low CO₂ concentration (10-15%)
- Contaminants
- High flue gas flow (2-3 million cfm @ 550 MW)
- Integration with steam cycle

Relevant Technologies (TRL 6+):

Chemical absorption (MDEA), Calcium looping, Solid sorbents, Polymeric membranes, Molten carbonate fuel cells

Carbon Capture (CC) Strategies: **Oxy-Combustion (Front-end Retrofit)**

Compression

Earth • Energy • Environment

Colorado School of Mines

Coal + $O_2 \rightarrow CO_2 + H_2O + Contam. + Heat$

(Fuel)

Method:

Use air separation plant to produce O₂ for combustion

After cleanup, flue gas contains high CO₂ concentration at low P

Steam Fuel CO, to Storage Power Block

Separation

Unit

0,

Key Challenges:

- Cost of air separation
- Temperature control in boiler
- Boiler design/retrofit

Relevant Technologies (TRL 6+):

Solid adsorbents, High temperature chemical looping, Ionic transport membranes

Easier separation with: 50-95% CO₂ (depending on partial firing, etc.)

CO, Recycle

Boiler

Carbon Capture (CC) Strategies: Pre-Combustion (System-wide change)

Earth • Energy • Environment

Colorado School of Mines

 $Coal + O_2 + H_2O \rightarrow CO/CO_2 + H_2/H_2O + Contam.$

(Fuel)

Method:

- Gasifier to make syngas
- Water-gas shift to convert
 CO to H₂/CO₂
- Separate the CO₂ and H₂

>40% CO₂ @ >400 psig H₂ + CO Syngas Cooler / Quench Syngas Cooler / Syngas Cooler Syn

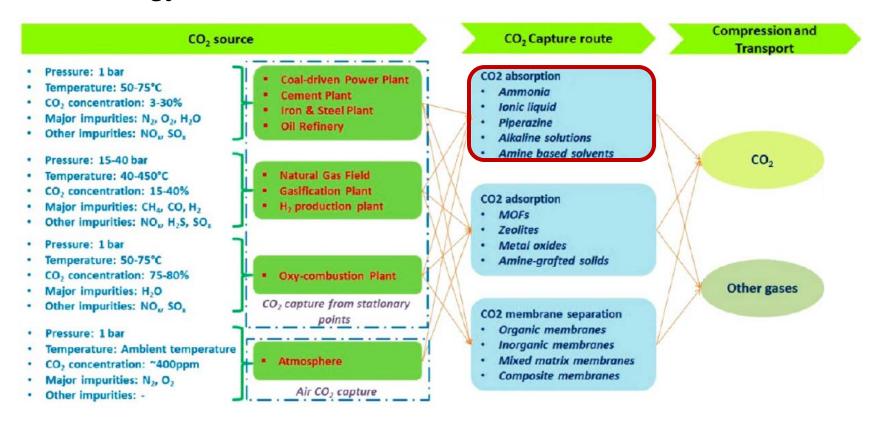
Key Challenges:

- Process complexity and cost
- Additional process requirements
 (ASU, WGS, thermal integration, H₂ turbine)
- Systems Integration

Relevant Technologies (TRL 6+):

Physical solvents (Rectisol, Selexol, Purisol), Solid sorbents

Efficiency penalties


 NGCC 7-11% (Selexol, Rectisol, membranes) for 85-94% CC

There are many CC technologies under development and many commercial already

Earth • Energy • Environment

- The capture route depends, in part, on the CO₂ source
- Absorption, Adsorption, and Membrane Separations are the primary technology classifications

Post-Combustion CC technology features both highest TRL and most R&D activity

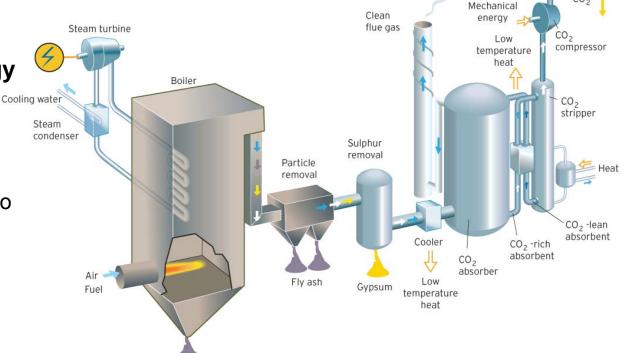
Earth • Energy • Environment

Colorado School of Mines

- Most mature P-C technology is <u>ab</u>sorption via monoethanolamines
- Commercially available tech dominated by solvent-based processes

Drivers:

High thermal req'mts (steam for regen of solvent)

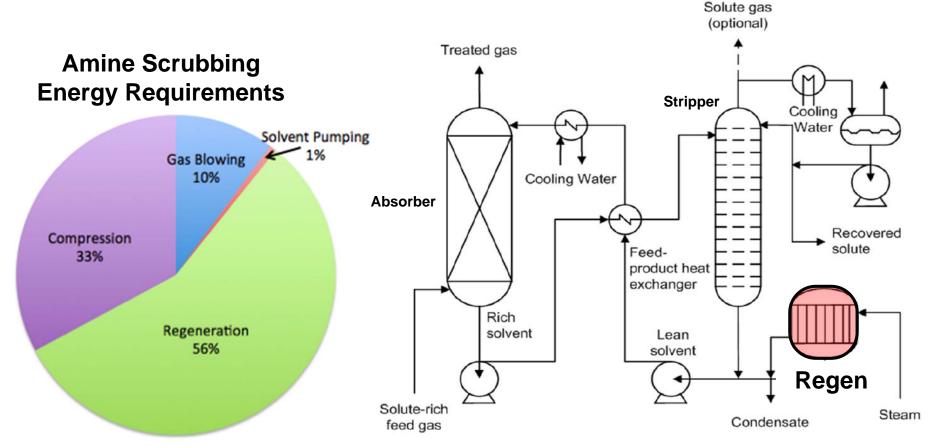

Parasitic electrical energy (compression of CO2)

> High capital costs

- Extremely large process equipment
- Expensive materials due to corrosion resistance
- Evaporative losses and wastewater treatment
- Large plant footprint

Result:

- > Increase in COE > 65%
- > Reduction in Efficiency ~10%
- > Cost of Avoided CO₂ > \$60/ton


Bottom ash

Amine scrubbing absorption is state-of-the-art for point-source CO₂ capture

Earth • Energy • Environment

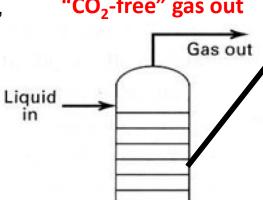
- In absorber: CO₂ dissolves into liquid solvent, reacts w/ binding agent in liquid
- In stripper: process is reversed
- Solvent regeneration dominates energy requirements

Advances in solvent-absorption lie in solvent improvement

Gas in

Earth • Energy • Environment

Colorado School of Mines


Desirable solvent properties:

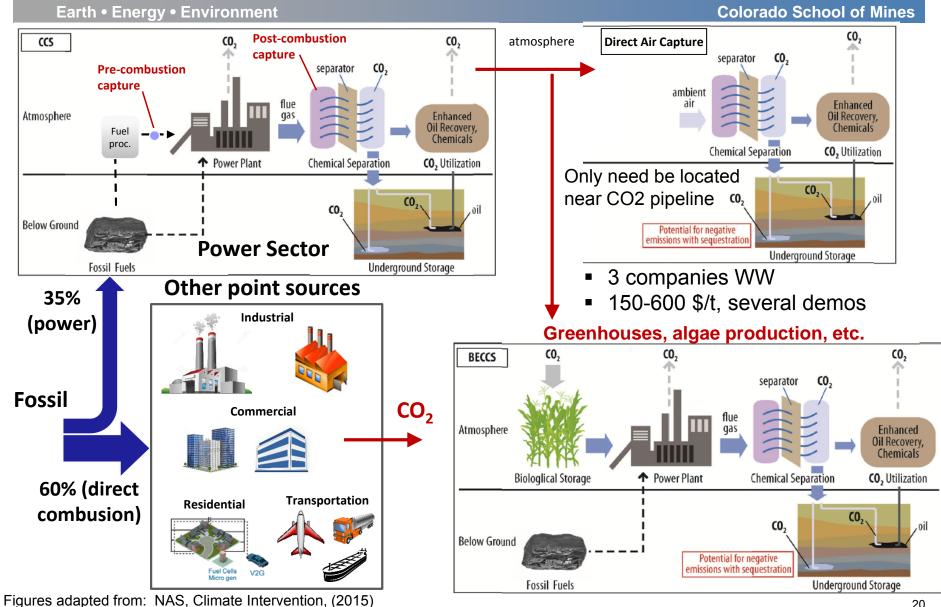
- High CO2 capacity
- Fast kinetics
- Low volatility & viscosity
- Relatively high density
- Nontoxic, nonflammable, and noncorrosive
- High thermal stability
- Resistance to oxidation

Gas to Liquid Flux

$$J_{\rm L,CO_2} = c_{\rm i} k_{\rm L} E$$

"CO2-free" gas out

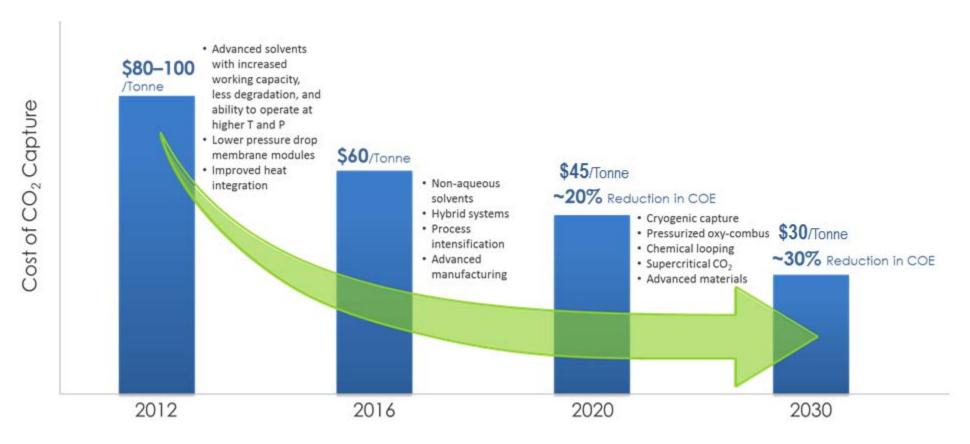
Petra Nova – 1.4 Mt CO₂/year 115 Meters Tall Absorber


Advanced R&D Focus:

- Blended Amines
- Liquid-Solid Sorbents
 - Carbonates
 - Ammonia
- Reduce Regen Duty by 30-50%

CO₂-loaded solvent out

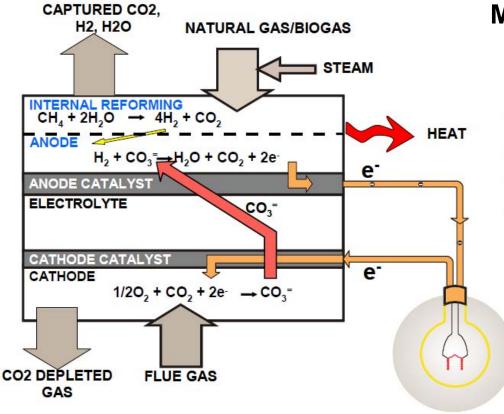
Carbon negative emissions via DAC and BECCS may be attractive for capturing difficult / past emissions


DOE targets for advancement in CC for power generation

Earth • Energy • Environment

Colorado School of Mines

However, note many projects being executed for industrial applications



Advanced CC Technologies – Hybrid Solution Electrochemical Membrane & Power Gen

Earth • Energy • Environment

Colorado School of Mines

Molten Carbonate Fuel Cells

The driving force for CO₂ separation is electrochemical potential, not pressure differential across the membrane

- Simultaneous Power Production and CO₂ Separation from Flue Gas of an Existing Facility
- Excess Process Water Byproduct
 - Complete Selectivity towards CO₂ as Compared to N₂

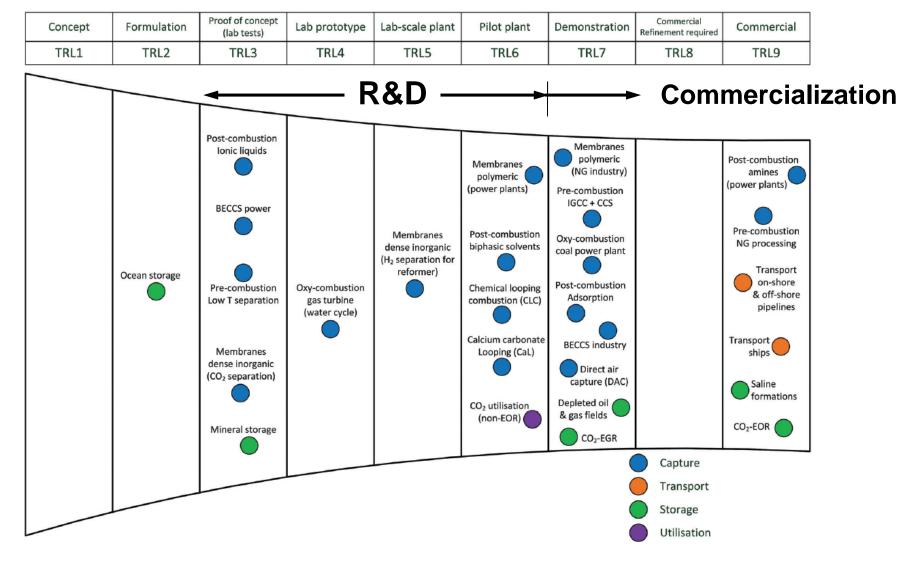
Re-application of commercial fuel cell technology for CC and additional power gen

Earth • Energy • Environment

Colorado School of Mines

Water

Operating Mode	90% Capture		Fuel Cell Energy in partnership with AECOM and Southern Company (\$30M DOE NETL)		
Operating Wode	Coal-Derived FG				
MCFC Gross Power, DC	1863.4	kW			
Energy & Water Input					
Natural Gas Fuel Flow	169.4	scfm	- h		
Fuel Energy (LHV)	2877.8	kW			
Water Consumed/(Produced)	(1.8)	gpm			
Consumed Power					
AC Power Consumption	(611.0)	kW			
Inverter Loss	(74.5)	kW			
Total Parasitic Power Consumption	(685.6)	kW			
Net Generation & Efficiency					
CEPACS Plant Net AC Output	1177.8	kW	FuelCell Face		
Electrical Efficiency (LHV)	40.9	%			
Carbon Capture					
Total Carbon Capture, %	92	%	CO ₂ to		
Carbon Capture from FG, %	90	%	Sequestration or Water Industrial Use Recovery		
Total CO ₂ Captured, Tons per Day	67	T/D	Electric Electric		
CO ₂ Purity	99.6	%	Power		
			Flue Gas with CO ₂ Purification & Water Cooling		
			with CO ₂ Cooling Anode Preheat Heat Recovery		
	Co	al Plant	SO ₂ Removal Electrochemical Membrane (ECM)		

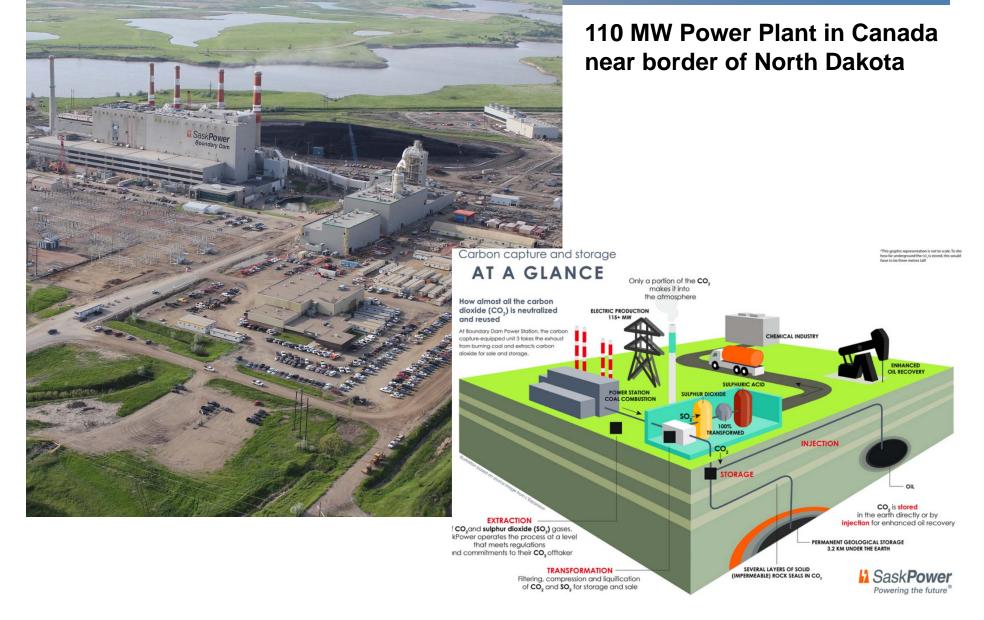


WHAT CC TECHNOLOGIES ARE READY TO PROVIDE A SOLUTION?

Technology Readiness Levels of various CO₂ capture technologies

Earth • Energy • Environment

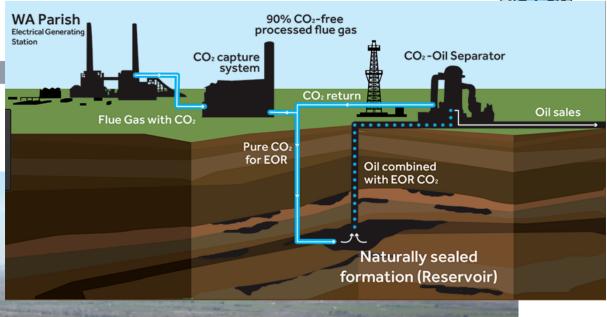
Only 2 Power Plant CCS demonstration projects are operational



Earth • Energy • Environment

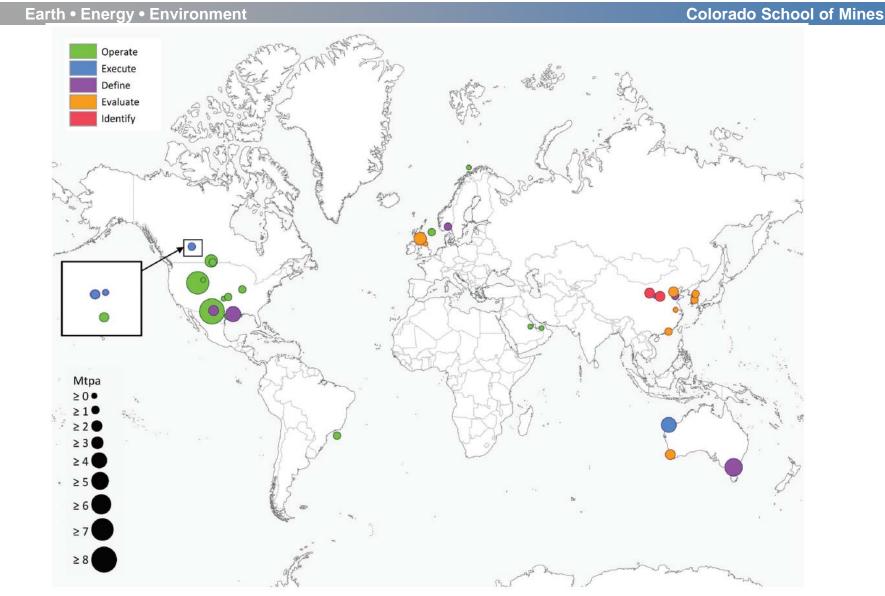
Project	Boundary Dam	Kemper	Petra Nova
Location	Saskatchewan, Canada	Mississippi, USA	Texas, USA
Start date	Oct 2014	Jan 2017 (?)	Dec 29, 2016
Size (MW)	115 (net)	582 (net)	240 (gross)
Size (Mt CO ₂ /yr)	1.3	264	1.4
New/Retrofit	Retrofit	New	Retrofit
Plant Type	PC	IGCC (NGCC)	PC
Steam Source	Steam Turbines		NG Cogeneration Plant
Solvent	Shell Cansolv	Selexol/TRIG	MHI KS-1
Initial Cost Estimate	\$1.1 billion	\$2.4 billion	\$1 billion
Actual Cost (est)	\$1.5 billion	\$7.5 billion	\$1 billion

Boundary Dam World's first CCS Power Plant



Petra Nova -Houston, TX

Earth • Energy • Environment

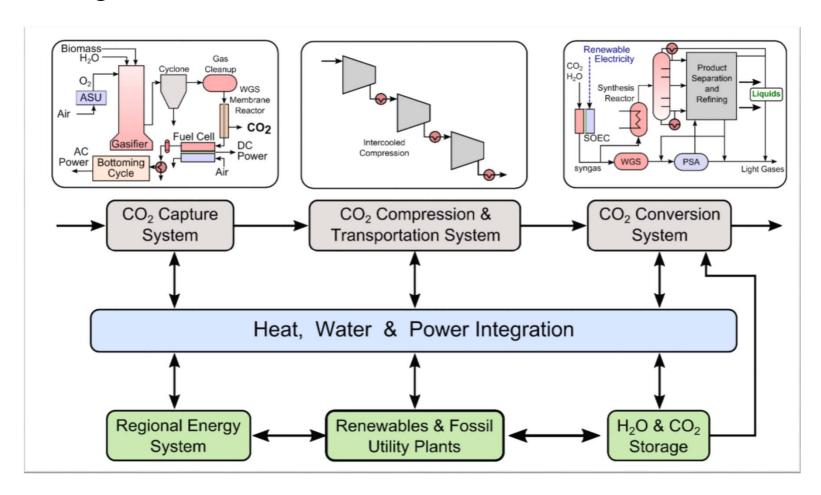

240 MW Power Plant

Most large-scale CCS demonstrations are in the U.S. and are dominated by EOR applications

Final thoughts from a Systems Integration Perspective

Earth • Energy • Environment

- Huge focus on power generation studies & tech development, yet vast majority of operational CCS projects are in industrial sector
- Realizing deep decarbonization goals requires solution sets that vary depending on resource mix (wind/solar [CSP, PV], geothermal, biomass, gas-CCS, nuclear)
- Few CC technologies address past emissions (DAC, BECCS)
- Firming capacity of technologies may be important for gridintegration → Dispatch/Storage considerations...
 - ➤ <u>Post-combustion</u> such as amine regeneration, could be *scheduled* at times of excess power enabling output to be boosted when required.
 - ➤ <u>Pre-combustion or oxy-fuel</u> capture, an oxygen buffer would allow the air separation unit to run independently of generation to maximize revenue/cost effectiveness (e.g., operate ASU during off-peak hours)
- Energy planning and Infrastructure transitions are needed
 - > Energy conservation, carbon management, water, power


Integration of CO₂ capture, conversion, & storage with energy & water systems

Earth • Energy • Environment

Colorado School of Mines

Eventually, infrastructure redesign/expansion and energy planning will need to be dealt with

Acknowledgements

Earth • Energy • Environment

- Evan Reznicek, PhD student (Mines)
- Jennifer Wilcox (WPI)
- Raghubir Gupta (Susteon, Inc.)

