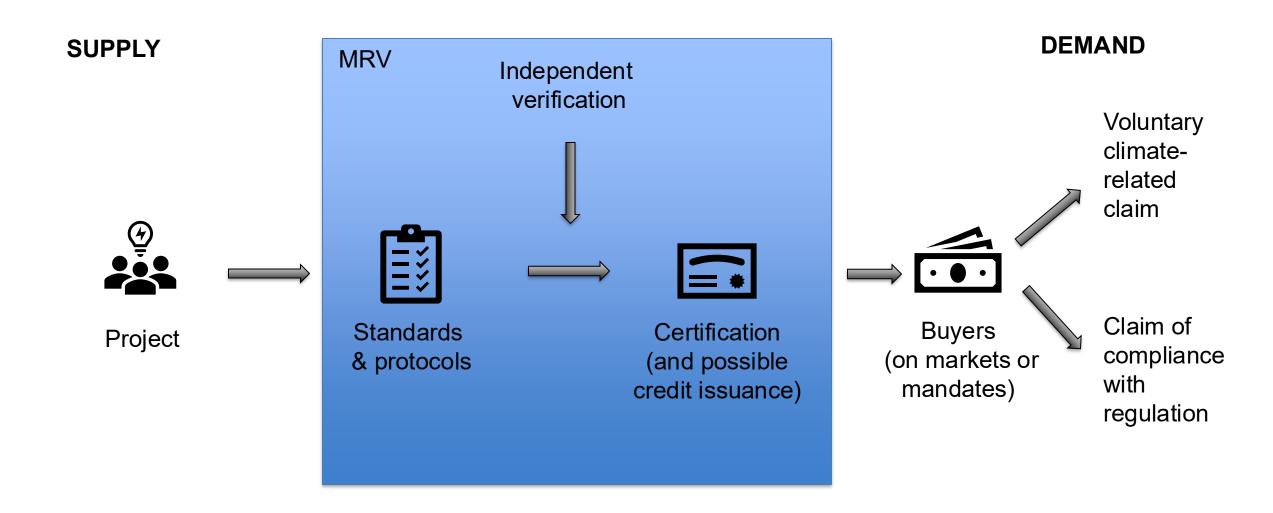

A carbon storage obligation (CSO) simplifies carbon accounting

Stephanie Arcusa, PhD

Assistant professor, School of Complex Adaptive Systems and Thunder School of Global Management Golden, CO, September 2025

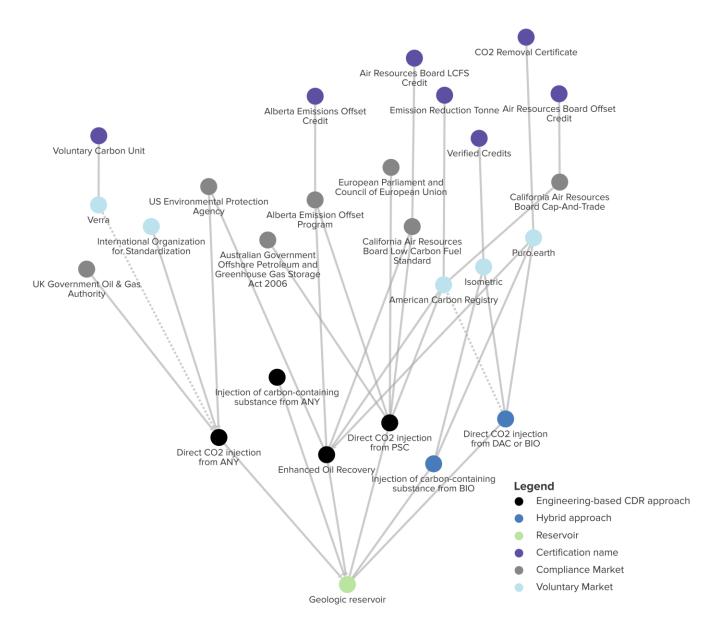
Confidence in carbon sequestration from the air and industrial processes is critical

- To ensure claims are real.
- To know how much remediation of carbon released from storage.
- To protect buyers, sellers, and the public from greenwashing.
- To make progress towards climate mitigation.
- A guarantee that it is money well spent on the service to clean up emissions.



Without demand, carbon sequestration from the air and industrial processes will not be built

- Carbon sequestration is waste management.
- Waste has no natural buyer—no one wants to pay for cleanup.
- Waste management is never free or voluntary—it's mandated.
- Carbon sequestration needs a mandated buyer.

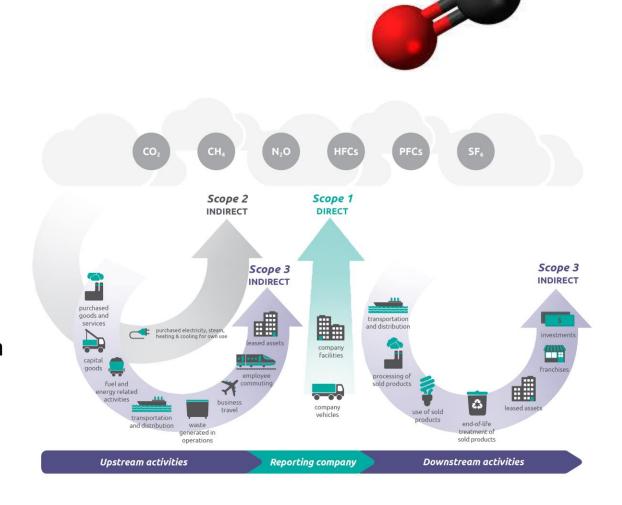


Monitoring, reporting and verification (MRV) protocols enable confidence and demand

Many different MRV protocols exist

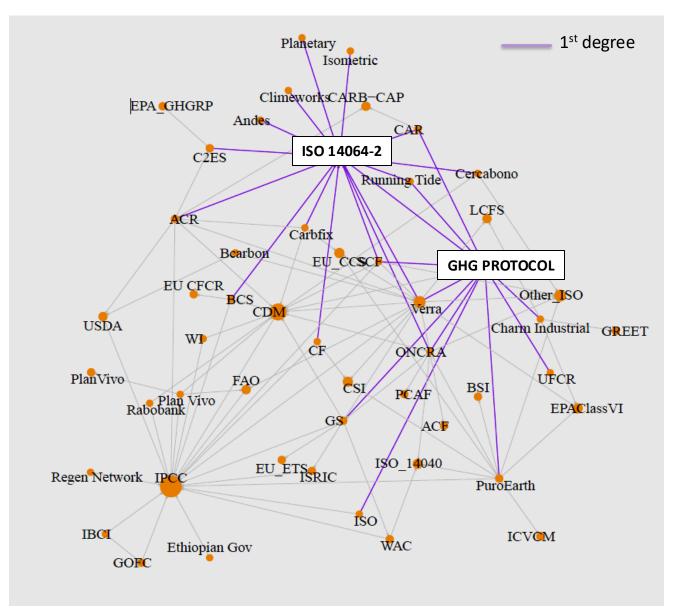
- At least 12 standard developing organizations (SDOs) cover geologic reservoirs (not counting mineralization).
- At least 5 voluntary and 7 compliance SDOs.
- At least 19 protocols cover at least five different capture technologies (point source, Direct Air Capture, bio-oil, EOR, and biomass-to-CO₂).

The MRV protocols enable confidence and demand through their

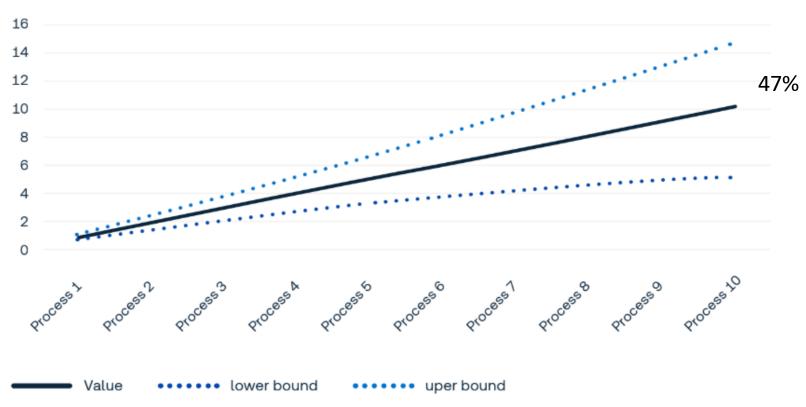

approach to carbon accounting

MRV protocols cover:

- Project governance
- Safety (people & environment)
- Regulatory requirements
- Monitoring
- Reporting
- Carbon accounting


The GHG Protocol (ISO-14064) established:

- 1. Climate action can be pursued voluntarily
- 2. The reporting should be done by the companies in the middle of the fossil fuel value chain


Half of the standard developing organizations that cover carbon sequestration follow the GHG Protocol (ISO 14064)

- Focusing on the middle of the supply chain has meant:
 - Focusing on controlling emissions.
 - Creating the scope 1-2-3 framework.
 - Using tools like life cycle analysis to attribute emissions upstream and downstream of the reporting company.

By focusing on the middle, carbon accounting requires life cycle analysis which compounds the final margin of error

Propagation of error, where each step has a 15% error

Assuming that each process has a +/-15% error margin, summing 10 processes together results in +/- 47% error margin, showing how margins of error compounds the more steps within a process.

Has confidence been reached? Has demand been stimulated? No...

Voluntary markets

The number of unique purchasers is increasing slowly and voluntary markets crashed for a second time in 2022 due to allegations of greenwashing.

Government procurement

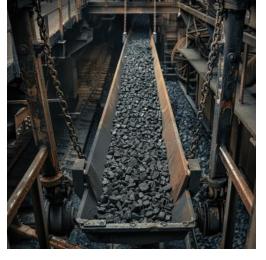
Full carbon
management could
consume 1/3 of
general government
expenditure in advance
economies. Gov'
spending budgets are
being squeezed.

Tax credits

Tax credits don't cover full costs and are politically volatile (e.g., 45Q in the US).

Compliance markets

Prices and confidence in the ETS are low; 'marginal abatement principle' does not address capital intensive CDR/CCS.


Introducing scope 0

Scope 0 accounts for carbon at the point of extraction

Moving responsibility all the way upstream simplifies carbon accounting

- Extracted fossil carbon (oil, coal, natural gas, limestone for cement) is a commercial commodity.
- It is already well measured in national databases subject to tax rules and fees.
- Accounting for carbon sequestration can be done without LCA, resulting in fewer compounding errors.
- It eliminates the need to track emissions throughout the economy because all fossil carbon is already accounted for.
- It involves 4 orders of magnitude fewer entities to regulate.

On the sequestration side, the accounting can focus on fewer measurements following an agnostic framework

its own protocol and equipment.

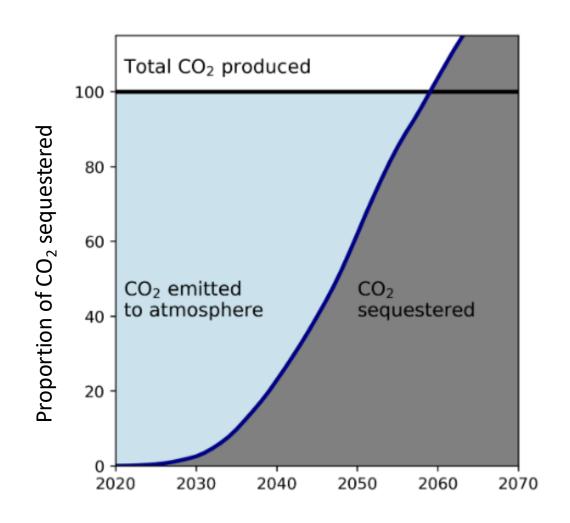
But all protocols must have a method that does the following:

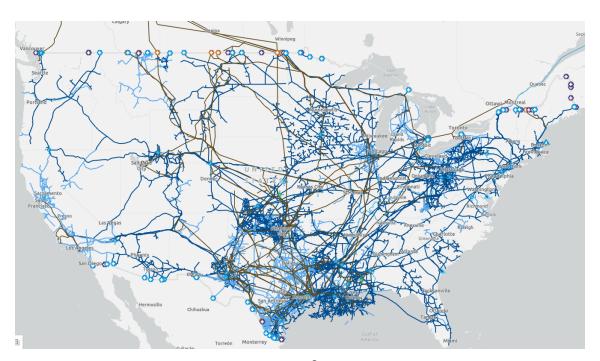
Measurements across reservoir types must be made to the same level of agreed certainty.

- 1. Defines the boundaries of the reservoir,
- 2. Quantifies additions to the reservoir,
- 3. Quantifies the carbon content of the reservoir on demand.

Scope 0 can be implemented progressively by a carbon storage obligation (CSO)

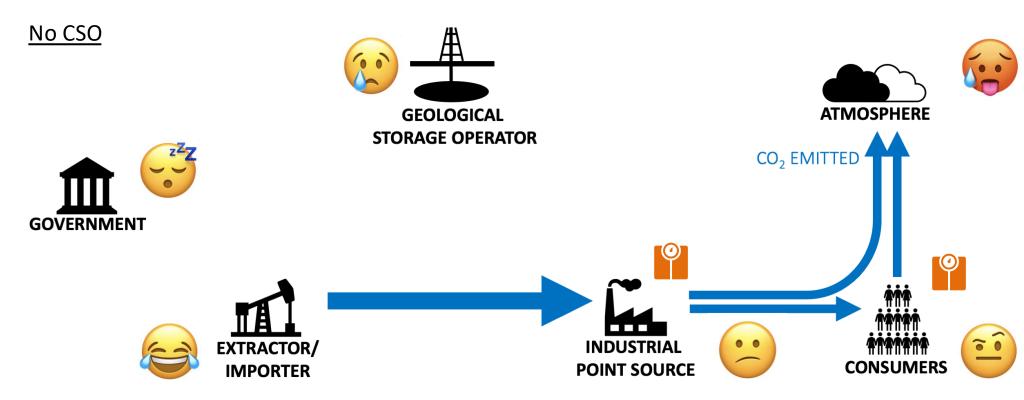
- An Extended Producer Responsibility (EPR) for fossil carbon.
- Cost of sequestration added to product.
- Like waste fees for paint, electronics, etc.
- Different versions: Carbon Takeback
 Obligation (CTBO); Carbon Removal
 Obligation (CRO), license-to-operate, etc.
- Early stage CSO: Article 23 in NZIA in EU




The transition is important

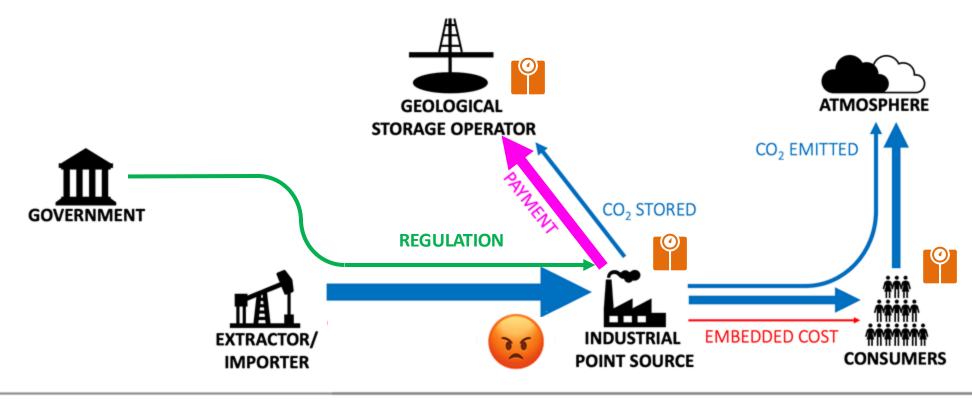
- Not possible to sequester 40 billion tonnes of CO₂.
- A transition period will exist in which actual sequestration will fall short of the necessary amount.
- Counterproductive technologies could be incentivized.
- Avoid a price shock.
- Multiple pathways possible: progressive stored fraction, or permits and futures.

Other benefits of a CSO


- Creates a demand for carbon sequestration.
- Enables net-zero for entire regions (e.g., states, countries, blocks).
- Cost shared throughout society on users of fossil carbon.
- Likely to be comparable to or cheaper than a carbon price on emissions.
- Open questions: fossil industry buy-in, border adjustments for trade, impacts on renewables, reducing impact on vulnerable populations.

U.S. energy infrastructure

Example: geological CO₂ disposal

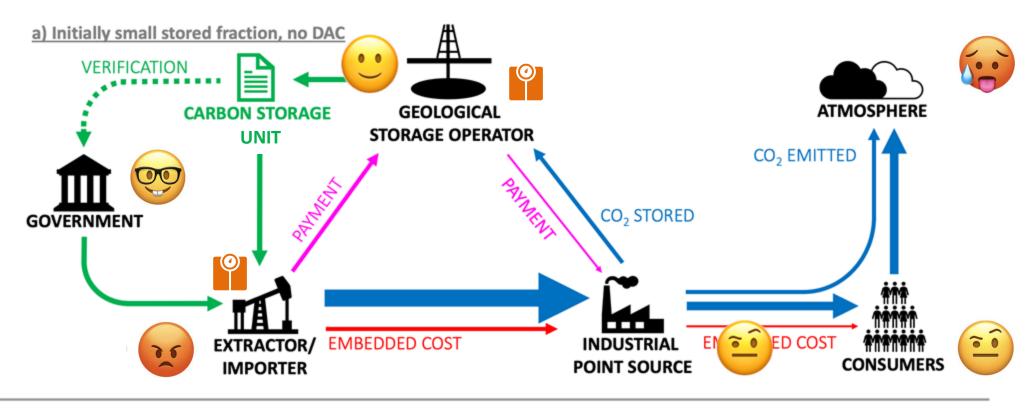

Current situation

- Actual or embedded CO₂
- Regulation and compliance
- CTBO compliance costs
- Payments for GCS

Carbon accounting

Emission Trading System and Tax Credit System

Actual or embedded CO₂


Regulation and compliance

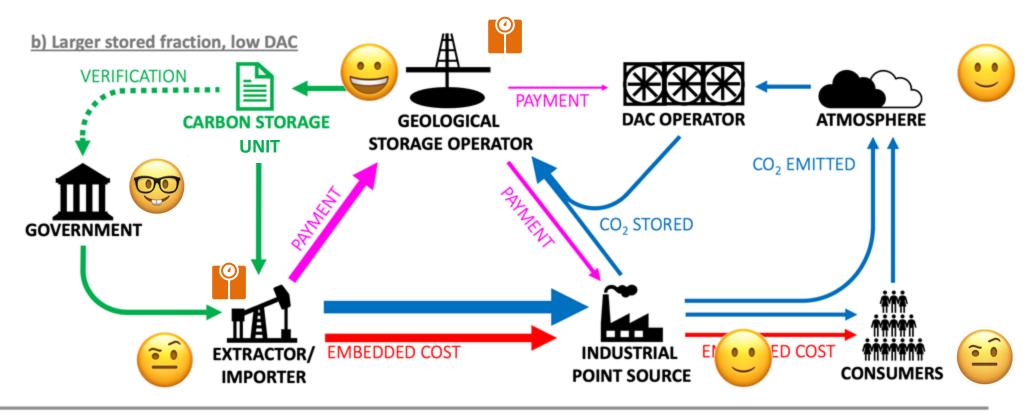
CTBO compliance costs

Payments for GCS

Carbon accounting

Modest "Carbon Storage Obligation" introduced

Actual or embedded CO₂


Regulation and compliance

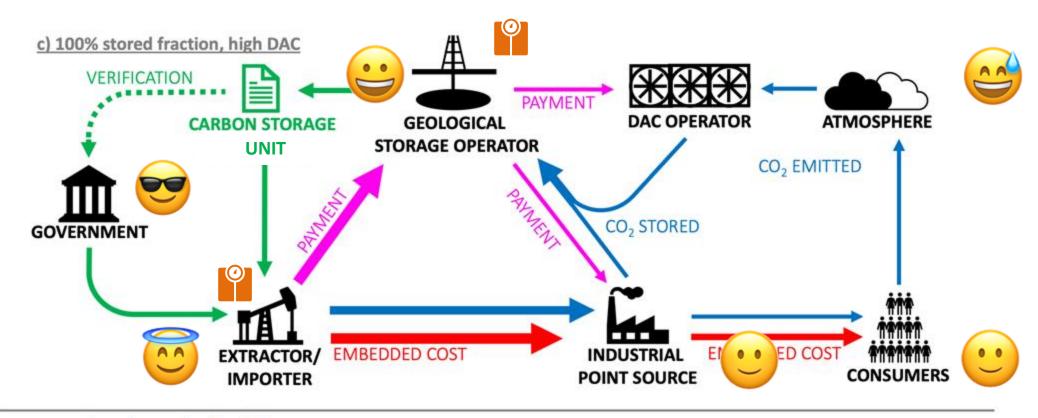
CTBO compliance costs

Payments for GCS

9

Scaling up the stored fraction

Actual or embedded CO₂


Regulation and compliance

CTBO compliance costs

Payments for GCS

O

100% stored fraction: Net Zero Achieved

Actual or embedded CO₂

Regulation and compliance

CTBO compliance costs

Payments for GCS

In conclusion:

- Confidence and demand go hand in hand in supporting the sequestration of carbon from air and industrial sources.
- MRV protocols are the enablers, particularly through their carbon accounting decisions.
- The decision to work in the middle of the fossil fuel value chain has complicated and increased the inaccuracy of carbon accounting.
- Scope 0 moves responsibility all the way upstream in the fossil fuel value chain where the carbon is well accounted for in the fewest number of entities.
- Scope 0 can be implemented by a carbon storage obligation (CSO), which requires that every tonne of fossil carbon extracted be matched by an equivalent tonne of carbon sequestration.
- Scope 0 and CSO enable confidence and create demand.

References

- Allen, M. R., Frame, D. J., & Mason, C. F. (2009). The case for mandatory sequestration. *Nature Geoscience*, 2(12), 813–814. https://doi.org/10.1038/ngeo709
- Arcusa, S., & Sprenkle-Hyppolite, S. (2022). Snapshot of the Carbon Dioxide Removal Certification and Standards Ecosystem (2021-2022). Climate Policy, 22(9–10), 1319–1332. https://doi.org/10.1080/14693062.2022.2094308
- Arcusa, S., Lackner, K. S., Hagood, E., Page, R., & Sriramprasad, V. (2022). A conceptual framework for the certification of carbon sequestration (Version 2). https://hdl.handle.net/2286/R.2.N.172390.
- Bednar, J., Obersteiner, M., & Wagner, F. (2019). On the financial viability of negative emissions. Nature Communications, 10(1), 1783. https://doi.org/10.1038/s41467-019-09782-x
- Boot, M., Sundvor, I., Jenkins, S., & Allen, M. (2025, January). Markets & Mandates—Policy Scenarios for UK CCS Deployment & Exploring the Role of a Carbon Takeback Obligation. Oxford Net Zero, Carbon Balance Initiative, and Carbon Capture and Storage Association. https://netzeroclimate.org/wp-content/uploads/2025/01/Markets-Mandates-2025.pdf
- Buck, H. J. (2020). Should carbon removal be treated as waste management? Lessons from the cultural history of waste. *Interface Focus*, 10(5), 20200010. https://doi.org/10.1098/rsfs.2020.0010
- Helferty, P. H. (2022). Getting to net zero through extended producer responsibility. *Journal of Advanced Manufacturing and Processing*, *4*(3), e10132. https://doi.org/10.1002/amp2.10132
- Honegger, M., Poralla, M., Michaelowa, A., & Ahonen, H.-M. (2021). Who Is Paying for Carbon Dioxide Removal? Designing Policy Instruments for Mobilizing Negative Emissions Technologies. *Frontiers in Climate*, *3*, 672996. https://doi.org/10.3389/fclim.2021.672996
- Jenkins, S., Mitchell-larson, E., Ives, M. C., Haszeldine, S., & Allen, M. (2021). Upstream decarbonization through a carbon takeback obligation: An affordable backstop climate policy. *Joule*, 1–20. https://doi.org/10.1016/j.joule.2021.10.012
- Kuijper, M., & Holleman, E. (2021). Carbon Takeback Obligation A Producers Responsibility Scheme on the Way to a Climate Neutral Energy System. https://assets-global.website-files.com/5f3afd763fbfb08ae798fbd7/60336e65ccc97506f7fc4036 CTBO Final Report Jan 2021 Complete.pdf
- Kuijper, M., Holleman, E., & van Soest, J. P. (2022). *A carbon takeback obligation for fossil fuels. Feasibility study phase 2, final report*. https://uploads-ssl.webflow.com/5f3afd763fbfb08ae798fbd7/62bb150bb0d746a2bea31e88_CTBO%20phase2%20report%20_final.pdf
- Lackner, K. S., Arcusa, S. H., Azarabadi, H., Sriramprasad, V., & Page, R. (2023). Carbon accounting without life cycle analysis. *Energy & Environmental Science*, 10.1039.D3EE01138K. https://doi.org/10.1039/D3EE01138K
- Lackner, K. S., & Jospe, C. (2017). Climate Change is a Waste Management Problem. *Issues in Science and Technology*, 33(3), 83–88. <a href="https://search.proquest.com/docview/2177047016?accountid=14874%0Ahttp://whel-primo.hosted.exlibrisgroup.com/openurl/44WHELF_BANG/44WHELF_BANG_services_page?genre=article&issn=07485492&title=Climate+Change+is+a+Waste+Management+Problem&volume=33&issue=3&da
- Lackner, K. S., Wilson, R., & Ziock, H.-J. (2000). Free-Market Approaches to Controlling Carbon Dioxide Emissions to the Atmosphere. Global Warming and Energy Policy, 31–46. https://doi.org/10.1007/978-1-4615-1323-0
- Thorsdottir, G., Hondeborg, D., Wicki, M., & Akeret, O. (2024, May). Navigating Governance of CDR Certification in the Voluntary Carbon Market: Insights and Perspectives. ETH Zurich.
- TUV SUD. (2025). Unpacking Uncertainty in Carbon Removal Assets.
- Zakkour, P., Kuijper, M., Dixon, P., Haszeldine, R. S., Towns, M., & Allen, M. (2024). Carbon storage units and carbon storage obligations: A review of policy approaches. *International Journal of Greenhouse Gas Control*, 133, 104087. https://doi.org/10.1016/j.ijggc.2024.104087

